A transferable plasticity region in C ampylobacter coli allows isolates of an otherwise non‐glycolytic food‐borne pathogen to catabolize glucose

Thermophilic C ampylobacter species colonize the intestine of agricultural and domestic animals commensally but cause severe gastroenteritis in humans. In contrast to other enteropathogenic bacteria, Campylobacter has been considered to be non‐glycolytic, a metabolic property originally used for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2015-12, Vol.98 (5), p.809-830
Hauptverfasser: Vorwerk, Hanne, Huber, Claudia, Mohr, Juliane, Bunk, Boyke, Bhuju, Sabin, Wensel, Olga, Spröer, Cathrin, Fruth, Angelika, Flieger, Antje, Schmidt‐Hohagen, Kerstin, Schomburg, Dietmar, Eisenreich, Wolfgang, Hofreuter, Dirk
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermophilic C ampylobacter species colonize the intestine of agricultural and domestic animals commensally but cause severe gastroenteritis in humans. In contrast to other enteropathogenic bacteria, Campylobacter has been considered to be non‐glycolytic, a metabolic property originally used for their taxonomic classification. Contrary to this dogma, we demonstrate that several C ampylobacter coli strains are able to utilize glucose as a growth substrate. Isotopologue profiling experiments with 13 C ‐labeled glucose suggested that these strains catabolize glucose via the pentose phosphate and Entner‐Doudoroff ( ED ) pathways and use glucose efficiently for de novo synthesis of amino acids and cell surface carbohydrates. Whole genome sequencing of glycolytic C . coli isolates identified a genomic island located within a ribosomal RNA gene cluster that encodes for all ED pathway enzymes and a glucose permease. We could show in vitro that a non‐glycolytic C . coli strain could acquire glycolytic activity through natural transformation with chromosomal DNA of C . coli and C . jejuni subsp. doylei strains possessing the ED pathway encoding plasticity region. These results reveal for the first time the ability of a Campylobacter species to catabolize glucose and provide new insights into how genetic macrodiversity through intra‐ and interspecies gene transfer expand the metabolic capacity of this food‐borne pathogen.
ISSN:0950-382X
1365-2958
DOI:10.1111/mmi.13159