Highly siderophile element and 187 Re- 187 Os isotopic systematics of ungrouped achondrite Northwest Africa 7325: Evidence for complex planetary processes

The abundances of highly siderophile elements (HSE; including Re, Os, Ir, Ru, Pt, and Pd) and Re- Os isotopic systematics were determined for two fragments from ungrouped achondrite NWA 7325. Rhenium-Os systematics are consistent with closed-system behavior since formation or soon after. The abundan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2019-05, Vol.54 (5), p.1042-1050
Hauptverfasser: Archer, Gregory J, Walker, Richard J, Irving, Anthony J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The abundances of highly siderophile elements (HSE; including Re, Os, Ir, Ru, Pt, and Pd) and Re- Os isotopic systematics were determined for two fragments from ungrouped achondrite NWA 7325. Rhenium-Os systematics are consistent with closed-system behavior since formation or soon after. The abundances of the HSE were therefore largely unaffected by late-stage secondary processes such as shock or terrestrial weathering. As an olivine gabbro cumulate, this meteorite has a bulk composition consistent with derivation from a body that produced a core, mantle and crust. Also consistent with derivation from a body that produced a core, both fragments of NWA 7325 have HSE abundances that are highly depleted compared to bulk chondrites. One fragment has ~0.002 × CI chondrite Ir and relative HSE abundances similar to bulk chondrites. The other fragment has ~0.0002 × CI chondrite Ir, and relative HSE abundances that are fractionated compared to bulk chondrites. The chondritic relative HSE abundances of the fragment characterized by higher HSE abundances most likely reflect the addition of exogenous chondritic material during or after crystallization by surface impacts. The HSE in the other fragment is likely more representative of the parent body crust. One formation model that can broadly account for the HSE abundances in this fragment is multiple episodes of low-pressure metal-silicate equilibration, followed by limited late accretion and mantle homogenization. Given the different HSE compositions of the two adjoining fragments, this meteorite provides an example of the overprint of global processes (differentiation and late accretion) by localized impact contamination.
ISSN:0016-7037
1086-9379
1945-5100
DOI:10.1111/maps.13261