Borrower‐based macroprudential measures and credit growth: How biased is the existing literature?

This paper analyzes over 700 estimates from 34 studies on the impact of borrower‐based measures (such as loan‐to‐value, debt‐to‐income, and debt‐service‐to‐income ratios) on bank loan provision. Our dataset reveals notable fragmentation in the literature concerning variable transformations, methods,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of economic surveys 2025-02, Vol.39 (1), p.66-102
Hauptverfasser: Malovaná, Simona, Hodula, Martin, Gric, Zuzana, Bajzík, Josef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper analyzes over 700 estimates from 34 studies on the impact of borrower‐based measures (such as loan‐to‐value, debt‐to‐income, and debt‐service‐to‐income ratios) on bank loan provision. Our dataset reveals notable fragmentation in the literature concerning variable transformations, methods, and estimated coefficients. We run a meta‐analysis on a subsample of 422 semi‐elasticities from 23 studies employing a consistent estimation framework to draw an economic interpretation. We confirm strong publication bias, particularly against positive and statistically insignificant estimates. After correcting for this bias, the effect indicates a credit growth reduction of −0.6 to −1.1 percentage points following the occurrence of borrower‐based measures, significantly lower than the unadjusted simple mean effect of the collected estimates. Additionally, our study examines the contexts of these estimates, finding that beyond publication bias, model specification and estimation method are vital in explaining the variation in reported coefficients.
ISSN:0950-0804
1467-6419
DOI:10.1111/joes.12608