Evidence of cylindrospermopsin uptake and clearance in fish (Oreochromis niloticus) under laboratory conditions

Cylindrospermopsin (CYN) is a cyanotoxin that has raised serious concerns about public health in many parts of the world. It can bioaccumulate and affect the health of aquatic organisms, but despite this, few studies have been conducted on CYN uptake and clearance in fish. In this paper, the authors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fish biology 2021-10, Vol.99 (4), p.1274-1279
Hauptverfasser: Silva, Rodrigo, Oliveira, Rafael Rosas, Azevedo, Sandra Maria Feliciano, Soares, Raquel Moares, Magalhães, Valéria Freitas De
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cylindrospermopsin (CYN) is a cyanotoxin that has raised serious concerns about public health in many parts of the world. It can bioaccumulate and affect the health of aquatic organisms, but despite this, few studies have been conducted on CYN uptake and clearance in fish. In this paper, the authors evaluate the uptake and clearance of CYN in the muscle tissue and viscera of juvenile tilapia (Oreochromis niloticus) after exposure to aqueous extracts and whole cells of Cylindrospermopsis raciborskii (CYN‐producer). CYN blended with commercial fish food, and three experiments were conducted. In the first trial, fish food, and aqueous extracts containing 0.31 μg CYN g−1 of food per day, was administered to tilapia for 15 days. In the second trial, fish were provided food and intact cells (5.4 μg CYN g−1 of food per day) for 15 days. In the last trial, they were provided fish food and aqueous extracts (0.8 μg CYN g−1 of food per day) for 12 days, and for the next 10 days, the animals were fed food without toxic cell extracts (to simulate a clearance period). The concentration of CYN in muscle tissue and viscera was analysed using ELISA. In the case of juvenile tilapia, the presence of CYN was higher in viscera than in muscle tissue, and the toxin remained in the tissues even after 10 days without the addition of contaminated food. The results suggest that tilapia represents a potential source of CYN transfer through the food web, and this shows the need for a continuous monitoring of this compound in organisms that are used for human and animal consumption.
ISSN:0022-1112
1095-8649
DOI:10.1111/jfb.14830