Developing Spatial Weight Matrices for Incorporation into Multiple Linear Regression Models: An Example Using Grizzly Bear Body Size and Environmental Predictor Variables
In this study, we develop spatial autoregressive (SAR) models relating grizzly bear body length to environmental predictor variables in the Alberta Rocky Mountains. We examine the ability of several different spatial neighborhoods to model spatial dependence and compare the estimated parameters and...
Gespeichert in:
Veröffentlicht in: | Geographical analysis 2013-10, Vol.45 (4), p.359-379 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we develop spatial autoregressive (SAR) models relating grizzly bear body length to environmental predictor variables in the Alberta Rocky Mountains. We examine the ability of several different spatial neighborhoods to model spatial dependence and compare the estimated parameters and residuals from a standard linear regression model (LRM) with those from three types of SAR models: error, lag, and Durbin. Further, we examine variable selection in the presence of negative dependence by repeating the modeling process using a SAR model. Two findings are that significant negative spatial dependence was present in the residuals of the LRM and that the choice of spatial neighborhood greatly affects the ability to detect spatial dependence. The incorporation of appropriate spatial weights into SAR models improves the fit and increases the significance of the parameter estimates vis‐à‐vis the linear model. The results of this study indicate that negative dependence may not have as severe negative effects on variable selection and parameter estimation as positive dependence. An examination of spatial dependence in regression modeling appears to be an important means of exploring the appropriateness of a sampling framework, predictor variables, and model form.
En este estudio desarrollamos modelos espaciales autorregresivos (SAR) que vinculan la longitud del cuerpo de osos grizzli con variables predictivas ambientales en las montañas rocosas de Alberta, Canadá. Examinamos la capacidad de varias vecindades espaciales para modelar la dependencia espacial y la comparación de los parámetros estimados, así como los residuos de un modelo de regresión lineal estándar (LRM) versus tres tipos de modelos SAR: error, retraso (lag) y Durbin. Además, se examina la selección de variables en la presencia de dependencia negativa mediante la repetición del proceso de modelado con un modelo de SAR. El estudio concluye que: 1) existe dependencia espacial negativa significativa en los residuos de la LRM y; 2) la selección de la vecindad espacial afecta en gran medida la capacidad de detectar la dependencia espacial. La incorporación de ponderaciones espaciales correspondientes a los modelos SAR mejora el ajuste y aumenta la importancia de los parámetros estimados versus el modelo lineal. Los resultados de este estudio indican que la dependencia negativa puede no tener los graves efectos negativos en la selección de variables y la estimación de parámetros si se comparan di |
---|---|
ISSN: | 0016-7363 1538-4632 |
DOI: | 10.1111/gean.12019 |