Consistent Estimation of the Structural Distribution Function

Motivated by problems in linguistics we consider a multinomial random vector for which the number of cells N is not much smaller than the sum of the cell frequencies, i.e. the sample size n. The distribution function of the uniform distribution on the set of all cell probabilities multiplied by N is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2000-12, Vol.27 (4), p.733-746
Hauptverfasser: Klaassen, Chris A. J., Mnatsakanov, Robert M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by problems in linguistics we consider a multinomial random vector for which the number of cells N is not much smaller than the sum of the cell frequencies, i.e. the sample size n. The distribution function of the uniform distribution on the set of all cell probabilities multiplied by N is called the structural distribution function of the cell probabilities. Conditions are given that guarantee that the structural distribution function can be estimated consistently as n increases indefinitely although n/N does not. The natural estimator is inconsistent and we prove consistency of essentially two alternative estimators.
ISSN:0303-6898
1467-9469
DOI:10.1111/1467-9469.00219