Theory & Methods: A New Proof of Murthy's Estimator which Applies to Sequential Sampling
Murthy's estimator has been used for constructing an unbiased estimator of a population total or mean from a sample of fixed size when there is unequal probability sampling without replacement. Traditionally, the estimator is derived by constructing an unordered version of Raj's ordered un...
Gespeichert in:
Veröffentlicht in: | Australian & New Zealand journal of statistics 2001-09, Vol.43 (3), p.281-286 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Murthy's estimator has been used for constructing an unbiased estimator of a population total or mean from a sample of fixed size when there is unequal probability sampling without replacement. Traditionally, the estimator is derived by constructing an unordered version of Raj's ordered unbiased estimator. This paper presents an elementary proof of Murthy's estimator which applies the Rao–Blackwell theorem to a very simple estimator. This proof includes any sequential sampling scheme, thus extending the usefulness of Murthy's estimator. We demonstrate this extension by deriving unbiased estimators for inverse sampling. |
---|---|
ISSN: | 1369-1473 1467-842X |
DOI: | 10.1111/1467-842X.00174 |