Beam Structured Channel Estimation for HF Skywave Massive MIMO-OFDM Communications
In this paper, we investigate high frequency (HF) skywave massive multiple-input multiple-output (MIMO) communications with orthogonal frequency division multiplexing (OFDM) modulation. Based on the triple-beam (TB) based channel model and the channel sparsity in the TB domain, we propose a beam str...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2024-11, Vol.23 (11), p.16301-16315 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate high frequency (HF) skywave massive multiple-input multiple-output (MIMO) communications with orthogonal frequency division multiplexing (OFDM) modulation. Based on the triple-beam (TB) based channel model and the channel sparsity in the TB domain, we propose a beam structured channel estimation (BSCE) approach. Specifically, we show that the space-frequency-time (SFT) domain estimator design for each TB domain channel element can be transformed into that of a low-dimensional TB domain estimator and the resulting SFT domain estimator is beam structured. We also present a method to select the TBs used for BSCE. Then we generalize the proposed BSCE by introducing window functions and a turbo principle to achieve a superior trade-off between complexity and performance. Furthermore, we present a low-complexity design and implementation of BSCE by exploiting the characteristics of the TB matrix. Simulation results validate the proposed theory and methods. |
---|---|
ISSN: | 1536-1276 1558-2248 1558-2248 |
DOI: | 10.1109/TWC.2024.3439725 |