PHY Layer Anonymous Precoding: Sender Detection Performance and Diversity- Multiplexing Tradeoff

Departing from traditional data security-oriented designs, the aim of anonymity is to conceal the transmitters' identities during communications to all possible receivers. In this work, joint anonymous transceiver design at the physical (PHY) layer is investigated. We first present sender detec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2024-05, Vol.23 (5), p.4531-4545
Hauptverfasser: Wei, Zhongxiang, Masouros, Christos, Zhu, Xu, Wang, Ping, Petropulu, Athina P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Departing from traditional data security-oriented designs, the aim of anonymity is to conceal the transmitters' identities during communications to all possible receivers. In this work, joint anonymous transceiver design at the physical (PHY) layer is investigated. We first present sender detection error rate (DER) performance analysis, where closed-form expression of DER is derived for a generic precoding scheme applied at the transmitter side. Based on the tight DER expression, a fully DER-tunable anonymous transceiver design is demonstrated. An alias channel-based combiner is first proposed, which helps the receiver find a Euclidean space that is close to the propagation channel of the received signal for high quality reception, but does not rely on the recognition of the real sender's channel. Then, two novel anonymous precoders are proposed under a given DER requirement, one being able to provide full multiplexing performance, and the other flexibly adjusting the number of multiplexing streams with further consideration of the receive-reliability. Simulation demonstrates that the proposed joint transceiver design can always guarantee the subscribed DER performance, while well striking the trade-off among the multiplexing, diversity and anonymity performance.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2023.3319532