Scalable Quadrature Spatial Modulation

We consider quadrature spatial modulation (QSM) schemes, which achieve high spectral efficiency (SE) via the dispersion of a relatively small number P of M -ary modulated symbols over a large number of combinations of n_{T} transmit antennas and T transmit instances. In particular, we design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2022-11, Vol.21 (11), p.9293-9311
Hauptverfasser: Rou, Hyeon Seok, de Abreu, Giuseppe Thadeu Freitas, Iimori, Hiroki, G., David Gonzalez, Gonsa, Osvaldo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider quadrature spatial modulation (QSM) schemes, which achieve high spectral efficiency (SE) via the dispersion of a relatively small number P of M -ary modulated symbols over a large number of combinations of n_{T} transmit antennas and T transmit instances. In particular, we design a new space-time block code (STBC)-based scalable QSM scheme combining high SE with maximum diversity and optimum coding gains. Deriving a closed-form expression for the optimum SE, we show that scaling the size T with n_{T} not only is required to achieve SE optimality, but also results in further gains in bit error rate (BER) performance. Building on the latter optimal parameterization, a fully optimized scalable QSM (OS-QSM) transmitter design is then obtained by introducing a new dispersion matrix index selection algorithm that ensures even utilization of spatial-temporal resources. Finally, a new greedy boxed iterative shrinkage thresholding algorithm (GB-ISTA) QSM receiver is proposed, which exploits the inherent sparsity of QSM signals and while detecting spatially and digitally modulated bits in a greedy fashion. The resulting low complexity of the new receiver, which is linear on n_{T} , enables the utilization of OS-QSM in systems of previously prohibitive dimensions.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2022.3175579