Cooperative Caching and Transmission Design in Cluster-Centric Small Cell Networks

Wireless content caching in small cell networks (SCNs) has recently been considered as an efficient way to reduce the data traffic and the energy consumption of the backhaul in emerging heterogeneous cellular networks. In this paper, we consider a cluster-centric SCN with combined design of cooperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2017-05, Vol.16 (5), p.3401-3415
Hauptverfasser: Zheng Chen, Lee, Jemin, Quek, Tony Q. S., Kountouris, Marios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wireless content caching in small cell networks (SCNs) has recently been considered as an efficient way to reduce the data traffic and the energy consumption of the backhaul in emerging heterogeneous cellular networks. In this paper, we consider a cluster-centric SCN with combined design of cooperative caching and transmission policy. Small base stations (SBSs) are grouped into disjoint clusters, in which in-cluster cache space is utilized as an entity. We propose a combined caching scheme, where part of the cache space in each cluster is reserved for caching the most popular content in every SBS, while the remaining is used for cooperatively caching different partitions of the less popular content in different SBSs, as a means to increase local content diversity. Depending on the availability and placement of the requested content, coordinated multi-point technique with either joint transmission or parallel transmission is used to deliver content to the served user. Using Poisson point process for the SBS location distribution and a hexagonal grid model for the clusters, we provide analytical results on the successful content delivery probability of both transmission schemes for a user located at the cluster center. Our analysis shows an inherent tradeoff between transmission diversity and content diversity in our cooperation design. We also study the optimal cache space assignment for two objective functions: maximization of the cache service performance and the energy efficiency. Simulation results show that the proposed scheme achieves performance gain by leveraging cache-level and signal-level cooperation and adapting to the network environment and user quality-of-service requirements.
ISSN:1536-1276
1558-2248
1558-2248
DOI:10.1109/TWC.2017.2682240