Joint Precoding and RRH Selection for User-Centric Green MIMO C-RAN

This paper jointly optimizes the precoding matrices and the set of active remote radio heads (RRHs) to minimize the network power consumption for a user-centric cloud radio access network, where both the RRHs and users have multiple antennas and each user is served by its nearby RRHs. Both users...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2017-05, Vol.16 (5), p.2891-2906
Hauptverfasser: Cunhua Pan, Huiling Zhu, Gomes, Nathan J., Jiangzhou Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper jointly optimizes the precoding matrices and the set of active remote radio heads (RRHs) to minimize the network power consumption for a user-centric cloud radio access network, where both the RRHs and users have multiple antennas and each user is served by its nearby RRHs. Both users' rate requirements and per-RRH power constraints are considered. Due to these conflicting constraints, this optimization problem may be infeasible. In this paper, we propose to solve this problem in two stages. In Stage I, a low-complexity user selection algorithm is proposed to find the largest subset of feasible users. In Stage II, a low-complexity algorithm is proposed to solve the optimization problem with the users selected from Stage I. Specifically, the re-weighted l 1 -norm minimization method is used to transform the original problem with non-smooth objective function into a series of weighted power minimization (WPM) problems, each of which can be solved by the weighted minimum mean square error (WMMSE) method. The solution obtained by the WMMSE method is proved to satisfy the Karush-Kuhn-Tucker conditions of the WPM problem. Moreover, a low-complexity algorithm based on Newton's method and the gradient descent method is developed to update the precoder matrices in each iteration of the WMMSE method. Simulation results demonstrate the rapid convergence of the proposed algorithms and the benefits of equipping multiple antennas at the user side. Moreover, the proposed algorithm is shown to achieve near-optimal performance in terms of NPC.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2017.2671358