Single-User Beamforming in Large-Scale MISO Systems with Per-Antenna Constant-Envelope Constraints: The Doughnut Channel

Large antenna arrays at the transmitter (TX) have recently been shown to achieve remarkable intra-cell interference suppression at low complexity. However, building large arrays in practice, would require the use of power-efficient RF amplifiers, which generally have poor linearity characteristics a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2012-11, Vol.11 (11), p.3992-4005
Hauptverfasser: Mohammed, S. K., Larsson, E. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large antenna arrays at the transmitter (TX) have recently been shown to achieve remarkable intra-cell interference suppression at low complexity. However, building large arrays in practice, would require the use of power-efficient RF amplifiers, which generally have poor linearity characteristics and hence would require the use of input signals with a very small peak-to-average power ratio (PAPR). In this paper, we consider the single-user Multiple-Input Single-Output (MISO) channel for the case where the TX antennas are constrained to transmit signals having constant envelope (CE). We show that, with per-antenna CE transmission the effective channel seen by the receiver is a SISO AWGN channel with its input constrained to lie in a doughnut-shaped region. For a broad class of fading channels, analysis of the effective doughnut channel shows that under a per-antenna CE input constraint, i) compared to an average-only total TX power constrained MISO channel, the extra total TX power required to achieve a desired information rate is small and bounded, ii) with N TX antennas an O(N) array power gain is achievable, and iii) for a desired information rate, using power-efficient amplifiers with CE inputs would require significantly less total TX power when compared to using highly linear (power-inefficient) amplifiers with high PAPR inputs.
ISSN:1536-1276
1558-2248
1558-2248
DOI:10.1109/TWC.2012.090312.111998