Analysis and Design of Cost-Effective, High-Throughput LDPC Decoders
This paper introduces a new approach to cost-effective, high-throughput hardware designs for low-density parity-check (LDPC) decoders. The proposed approach, called nonsurjective finite alphabet iterative decoders (NS-FAIDs), exploits the robustness of message-passing LDPC decoders to inaccuracies i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2018-03, Vol.26 (3), p.508-521 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces a new approach to cost-effective, high-throughput hardware designs for low-density parity-check (LDPC) decoders. The proposed approach, called nonsurjective finite alphabet iterative decoders (NS-FAIDs), exploits the robustness of message-passing LDPC decoders to inaccuracies in the calculation of exchanged messages, and it is shown to provide a unified framework for several designs previously proposed in the literature. NS-FAIDs are optimized by density evolution for regular and irregular LDPC codes, and are shown to provide different tradeoffs between hardware complexity and decoding performance. Two hardware architectures targeting high-throughput applications are also proposed, integrating both Min-Sum (MS) and NS-FAID decoding kernels. ASIC post synthesis implementation results on 65-nm CMOS technology show that NS-FAIDs yield significant improvements in the throughput to area ratio, by up to 58.75% with respect to the MS decoder, with even better or only slightly degraded error correction performance. |
---|---|
ISSN: | 1063-8210 1557-9999 |
DOI: | 10.1109/TVLSI.2017.2776561 |