High-Throughput Modular Multiplication and Exponentiation Algorithms Using Multibit-Scan-Multibit-Shift Technique

Modular exponentiation with a large modulus and exponent is a fundamental operation in many public-key cryptosystems. This operation is usually accomplished by repeating modular multiplications. Montgomery modular multiplication has been widely used to relax the quotient determination. The carry-sav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2015-09, Vol.23 (9), p.1710-1719
Hauptverfasser: Rezai, Abdalhossein, Keshavarzi, Parviz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modular exponentiation with a large modulus and exponent is a fundamental operation in many public-key cryptosystems. This operation is usually accomplished by repeating modular multiplications. Montgomery modular multiplication has been widely used to relax the quotient determination. The carry-save adder has been employed to reduce the critical path. This paper presents and evaluates a new and efficient Montgomery modular multiplication architecture based on a new digit serial computation. The proposed architecture relaxes the high-radix partial multiplication to a binary multiplication. It also performs several multiplications of consecutive zero bits in one clock cycle instead of several clock cycles. Moreover, the right-to-left and left-to-right modular exponentiation architectures have been modified to use the proposed modular multiplication architecture as its structural unit. We provide the implementation results on a Xilinx Virtex 5 FPGA demonstrating that the total computation time and throughput rate of the proposed architectures outperform most results so far in the literatures.
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2014.2355854