Multi-Layer Scene Representation from Composed Focal Stacks
Multi-layer images are a powerful scene representation for high-performance rendering in virtual/augmented reality (VR/AR). The major approach to generate such images is to use a deep neural network trained to encode colors and alpha values of depth certainty on each layer using registered multi-vie...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2023-11, Vol.29 (11), p.4719-4729 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multi-layer images are a powerful scene representation for high-performance rendering in virtual/augmented reality (VR/AR). The major approach to generate such images is to use a deep neural network trained to encode colors and alpha values of depth certainty on each layer using registered multi-view images. A typical network is aimed at using a limited number of nearest views. Therefore, local noises in input images from a user-navigated camera deteriorate the final rendering quality and interfere with coherency over view transitions. We propose to use a focal stack composed of multi-view inputs to diminish such noises. We also provide theoretical analysis for ideal focal stacks to generate multi-layer images. Our results demonstrate the advantages of using focal stacks in coherent rendering, memory footprint, and AR-supported data capturing. We also show three applications of imaging for VR. |
---|---|
ISSN: | 1077-2626 1941-0506 |
DOI: | 10.1109/TVCG.2023.3320248 |