Multi-Layer Scene Representation from Composed Focal Stacks

Multi-layer images are a powerful scene representation for high-performance rendering in virtual/augmented reality (VR/AR). The major approach to generate such images is to use a deep neural network trained to encode colors and alpha values of depth certainty on each layer using registered multi-vie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2023-11, Vol.29 (11), p.4719-4729
Hauptverfasser: Ishikawa, Reina, Saito, Hideo, Kalkofen, Denis, Mori, Shohei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-layer images are a powerful scene representation for high-performance rendering in virtual/augmented reality (VR/AR). The major approach to generate such images is to use a deep neural network trained to encode colors and alpha values of depth certainty on each layer using registered multi-view images. A typical network is aimed at using a limited number of nearest views. Therefore, local noises in input images from a user-navigated camera deteriorate the final rendering quality and interfere with coherency over view transitions. We propose to use a focal stack composed of multi-view inputs to diminish such noises. We also provide theoretical analysis for ideal focal stacks to generate multi-layer images. Our results demonstrate the advantages of using focal stacks in coherent rendering, memory footprint, and AR-supported data capturing. We also show three applications of imaging for VR.
ISSN:1077-2626
1941-0506
DOI:10.1109/TVCG.2023.3320248