Force-Directed Graph Layouts Revisited: A New Force Based on the T-Distribution
In this article, we propose the t-FDP model, a force-directed placement method based on a novel bounded short-range force (t-force) defined by Student's t-distribution. Our formulation is flexible, exerts limited repulsive forces for nearby nodes and can be adapted separately in its short- and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2024-07, Vol.30 (7), p.3650-3663 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we propose the t-FDP model, a force-directed placement method based on a novel bounded short-range force (t-force) defined by Student's t-distribution. Our formulation is flexible, exerts limited repulsive forces for nearby nodes and can be adapted separately in its short- and long-range effects. Using such forces in force-directed graph layouts yields better neighborhood preservation than current methods, while maintaining low stress errors. Our efficient implementation using a Fast Fourier Transform is one order of magnitude faster than state-of-the-art methods and two orders faster on the GPU, enabling us to perform parameter tuning by globally and locally adjusting the t-force in real-time for complex graphs. We demonstrate the quality of our approach by numerical evaluation against state-of-the-art approaches and extensions for interactive exploration. |
---|---|
ISSN: | 1077-2626 1941-0506 1941-0506 |
DOI: | 10.1109/TVCG.2023.3238821 |