Interactive Graph Construction for Graph-Based Semi-Supervised Learning
Semi-supervised learning (SSL) provides a way to improve the performance of prediction models (e.g., classifier) via the usage of unlabeled samples. An effective and widely used method is to construct a graph that describes the relationship between labeled and unlabeled samples. Practical experience...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2021-09, Vol.27 (9), p.3701-3716 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Semi-supervised learning (SSL) provides a way to improve the performance of prediction models (e.g., classifier) via the usage of unlabeled samples. An effective and widely used method is to construct a graph that describes the relationship between labeled and unlabeled samples. Practical experience indicates that graph quality significantly affects the model performance. In this paper, we present a visual analysis method that interactively constructs a high-quality graph for better model performance. In particular, we propose an interactive graph construction method based on the large margin principle. We have developed a river visualization and a hybrid visualization that combines a scatterplot, a node-link diagram, and a bar chart to convey the label propagation of graph-based SSL. Based on the understanding of the propagation, a user can select regions of interest to inspect and modify the graph. We conducted two case studies to showcase how our method facilitates the exploitation of labeled and unlabeled samples for improving model performance. |
---|---|
ISSN: | 1077-2626 1941-0506 |
DOI: | 10.1109/TVCG.2021.3084694 |