GPU-based Real-Time Approximation of the Ablation Zone for Radiofrequency Ablation

Percutaneous radiofrequency ablation (RFA) is becoming a standard minimally invasive clinical procedure for the treatment of liver tumors. However, planning the applicator placement such that the malignant tissue is completely destroyed, is a demanding task that requires considerable experience. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2011-12, Vol.17 (12), p.1812-1821
Hauptverfasser: Rieder, C., Kroeger, T., Schumann, C., Hahn, H. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Percutaneous radiofrequency ablation (RFA) is becoming a standard minimally invasive clinical procedure for the treatment of liver tumors. However, planning the applicator placement such that the malignant tissue is completely destroyed, is a demanding task that requires considerable experience. In this work, we present a fast GPU-based real-time approximation of the ablation zone incorporating the cooling effect of liver vessels. Weighted distance fields of varying RF applicator types are derived from complex numerical simulations to allow a fast estimation of the ablation zone. Furthermore, the heat-sink effect of the cooling blood flow close to the applicator's electrode is estimated by means of a preprocessed thermal equilibrium representation of the liver parenchyma and blood vessels. Utilizing the graphics card, the weighted distance field incorporating the cooling blood flow is calculated using a modular shader framework, which facilitates the real-time visualization of the ablation zone in projected slice views and in volume rendering. The proposed methods are integrated in our software assistant prototype for planning RFA therapy. The software allows the physician to interactively place virtual RF applicator models. The real-time visualization of the corresponding approximated ablation zone facilitates interactive evaluation of the tumor coverage in order to optimize the applicator's placement such that all cancer cells are destroyed by the ablation.
ISSN:1077-2626
1941-0506
DOI:10.1109/TVCG.2011.207