A Light Illumination Enhancement Device for Photoacoustic Imaging: In Vivo Animal Study

Photoacoustic (PA) imaging detects acoustic signals generated by thermal expansion of a light-excited tissue or contrast agents. PA signal amplitude and image quality directly depend on the light fluence at the target depth. With conventional PA imaging systems, approximately 30% energy of incident...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2017-08, Vol.64 (8), p.1205-1211
Hauptverfasser: Yu, Jaesok, Schuman, Joel S., Lee, Jung-Kun, Lee, Sang-Goo, Chang, Jin Ho, Kim, Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoacoustic (PA) imaging detects acoustic signals generated by thermal expansion of a light-excited tissue or contrast agents. PA signal amplitude and image quality directly depend on the light fluence at the target depth. With conventional PA imaging systems, approximately 30% energy of incident light at the near-infrared region would be lost due to reflection on the skin surface. Such light loss directly leads to a reduction of PA signal and image quality. A new light delivery scheme that collects and redistributes reflected light energy was recently suggested, which is called the light catcher. In our previous study, proof of concept using a finite-element simulation model was shown and a laboratory-built prototype of the light catcher was applied on tissue-mimicking phantoms. In this paper, we present an elaborate prototype of a high-frequency PA probe with the light catcher fabricated using 3-D printing technology, which is conformal to a subcutaneous tumor in mice. The in vivo usefulness of the developed prototype was evaluated in a mouse tumor model. Equipped with the light catcher, PA signal amplitude from the clinical photosensitizer injected into the mouse tumor was enhanced by 33.7%, which is approximately equivalent to the percent light loss due to reflection on the skin.
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2017.2713599