High-frequency surface acoustic waves excited on thin-oriented LiNbO/sub 3/ single-crystal layers transferred onto silicon
The need for high-frequency, wide-band filters has instigated many developments based on combining thin piezoelectric films and high acoustic velocity materials (sapphire, diamond-like carbon, silicon, etc.) to ease the manufacture of devices operating above 2 GHz. In the present work, a technologic...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2007-04, Vol.54 (4), p.870-876 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The need for high-frequency, wide-band filters has instigated many developments based on combining thin piezoelectric films and high acoustic velocity materials (sapphire, diamond-like carbon, silicon, etc.) to ease the manufacture of devices operating above 2 GHz. In the present work, a technological process has been developed to achieve thin-oriented, single-crystal lithium niobate (LiNbO 3 ) layers deposited on (100) silicon wafers for the fabrication of radio-frequency (RF) surface acoustic wave (SAW) devices. The use of such oriented thin films is expected to favor large coupling coefficients together with a good control of the layer properties, enabling one to chose the best combination of layer orientation to optimize the device. A theoretical analysis of the elastic wave assumed to propagate on such a combination of material is first exposed. Technological aspects then are described briefly. Experimental results are presented and compared to the state of art |
---|---|
ISSN: | 0885-3010 1525-8955 |
DOI: | 10.1109/TUFFC.2007.321 |