Two-Conductor Ports Enabling Broadband Operation of Substrateless Microscale Silicon Waveguides
We extend the operation bandwidth of substrateless all-silicon waveguides beyond the single-mode region. This requires a suitably broadband port-access scheme, as well as careful management of undesired higher order modes. It is found that a length of two-conductor waveguide serves both purposes. In...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on terahertz science and technology 2024-07, Vol.14 (4), p.543-547 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the operation bandwidth of substrateless all-silicon waveguides beyond the single-mode region. This requires a suitably broadband port-access scheme, as well as careful management of undesired higher order modes. It is found that a length of two-conductor waveguide serves both purposes. In this way, we experimentally demonstrate broadband power transfer between dielectric waveguides and numerically investigate suppression of higher order modes. This 3-D solid-metal two-conductor waveguide shows promise as a package-external terahertz port, to address the 40% relative-bandwidth bottleneck that is currently imposed by hollow metallic waveguides. This represents a step toward efficient handheld terahertz systems that fully exploit the broad available spectrum. |
---|---|
ISSN: | 2156-342X 2156-3446 |
DOI: | 10.1109/TTHZ.2024.3407686 |