Terahertz and Visible Probing of Particles Suspended in Air
The attenuation of air suspended particles is measured with a terahertz (THz) time-domain spectrometer. Simultaneously, the attenuation at a wavelength of 650 nm is probed with a laser diode. On the one hand, this dual measurement allows a direct assessment of the visibility evolution in the THz ran...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on terahertz science and technology 2019-03, Vol.9 (2), p.120-125 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The attenuation of air suspended particles is measured with a terahertz (THz) time-domain spectrometer. Simultaneously, the attenuation at a wavelength of 650 nm is probed with a laser diode. On the one hand, this dual measurement allows a direct assessment of the visibility evolution in the THz range compared to the visible range. On the other hand, this setup provides an estimation of the scattering strength and the density of particles. Using the Mie theory, the method is successfully applied to experimentally characterize the refractive index of sand grains and glass beads. The refractive indexes of sand grains and glass beads, average over the acquisitions, are 1.67 and 2.54, respectively. The estimation of the scattering properties of sand grains is crucial to evaluate the performance of THz systems to image through brownout clouds that are created by helicopter rotors when landing in arid areas. |
---|---|
ISSN: | 2156-342X 2156-3446 |
DOI: | 10.1109/TTHZ.2019.2891077 |