Distributionally Robust Chance-Constrained Optimal Transmission Switching for Renewable Integration
Increasing integration of renewable generation poses significant challenges to ensure robustness guarantees in real-time energy system decision-making. This work aims to develop a robust optimal transmission switching (OTS) framework that can effectively relieve grid congestion and mitigate renewabl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on sustainable energy 2023-01, Vol.14 (1), p.1-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Increasing integration of renewable generation poses significant challenges to ensure robustness guarantees in real-time energy system decision-making. This work aims to develop a robust optimal transmission switching (OTS) framework that can effectively relieve grid congestion and mitigate renewable curtailment. We formulate a two-stage distributionally robust chance-constrained (DRCC) problem that assures limited constraint violations for any uncertainty distribution within an ambiguity set. Here, the second-stage recourse variables are represented as linear functions of uncertainty, yielding an equivalent reformulation involving linear constraints only. We utilize moment-based (mean-mean absolute deviation) and distance-based (\infty-Wasserstein distance) ambiguity sets that lead to scalable mixed-integer linear program (MILP) formulations. Numerical experiments on the IEEE 14-bus and 118-bus systems have demonstrated the performance improvements of the proposed DRCC-OTS approaches in terms of guaranteed constraint violations and reduced renewable curtailment. In particular, the computational efficiency of the moment-based MILP approach, which is scenario-free with fixed problem dimensions, has been confirmed, making it suitable for real-time grid operations. |
---|---|
ISSN: | 1949-3029 1949-3037 |
DOI: | 10.1109/TSTE.2022.3203669 |