On the Convergence of Nested Decentralized Gradient Methods With Multiple Consensus and Gradient Steps
In this paper, we consider minimizing a sum of local convex objective functions in a distributed setting, where the cost of communication and/or computation can be expensive. We extend and generalize the analysis for a class of nested gradient-based distributed algorithms [NEAR-DGD, (Berahas et al....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2021, Vol.69, p.4192-4203 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!