On the Convergence of Nested Decentralized Gradient Methods With Multiple Consensus and Gradient Steps

In this paper, we consider minimizing a sum of local convex objective functions in a distributed setting, where the cost of communication and/or computation can be expensive. We extend and generalize the analysis for a class of nested gradient-based distributed algorithms [NEAR-DGD, (Berahas et al....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2021, Vol.69, p.4192-4203
Hauptverfasser: Berahas, Albert, Bollapragada, Raghu, Wei, Ermin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider minimizing a sum of local convex objective functions in a distributed setting, where the cost of communication and/or computation can be expensive. We extend and generalize the analysis for a class of nested gradient-based distributed algorithms [NEAR-DGD, (Berahas et al. , 2019)] to account for multiple gradient steps at every iteration. We show the effect of performing multiple gradient steps on the rate of convergence and on the size of the neighborhood of convergence, and prove R-Linear convergence to the exact solution with a fixed number of gradient steps and increasing number of consensus steps. We test the performance of the generalized method on quadratic functions and show the effect of multiple consensus and gradient steps in terms of iterations, number of gradient evaluations, number of communications and cost.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2021.3094906