Generalized Multiplexed Waveform Design Framework for Cost-Optimized MIMO Radar

Cost-optimization through the minimization of hardware and processing costs with minimal loss in performance is an interesting design paradigm in evolving and emerging Multiple-Input-Multiple-Output (MIMO) radar systems. This optimization is a challenging task due to the increasing Radio Frequency (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2021, Vol.69, p.88-102
Hauptverfasser: Hammes, Christian, M. R., Bhavani Shankar, Ottersten, Bjorn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cost-optimization through the minimization of hardware and processing costs with minimal loss in performance is an interesting design paradigm in evolving and emerging Multiple-Input-Multiple-Output (MIMO) radar systems. This optimization is a challenging task due to the increasing Radio Frequency (RF) hardware complexity as well as the signal design algorithm complexity in applications requiring high angular resolution. Towards addressing these, the paper proposes a low-complexity signal design framework, which incorporates a generalized time multiplex scheme for reducing the RF hardware complexity with a subsequent discrete phase modulation. The scheme further aims at achieving simultaneous transmit beamforming and maximum virtual MIMO aperture to enable better target detection and discrimination performance. Furthermore, the paper proposes a low-complexity signal design scheme for beampattern matching in the aforementioned setting. The conducted performance evaluation indicates that the listed design objectives are met.
ISSN:1053-587X
1941-0476
1941-0476
DOI:10.1109/TSP.2020.3040859