New Viewpoint and Algorithms for Water-Filling Solutions in Wireless Communications

Water-filling solutions play an important role in the designs for wireless communications, e.g., transmit covariance matrix design. A traditional physical understanding is to use the analogy of pouring water over a pool with fluctuating bottom. Numerous variants of water-filling solutions have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2020, Vol.68, p.1618-1634
Hauptverfasser: Xing, Chengwen, Jing, Yindi, Wang, Shuai, Ma, Shaodan, Poor, H. Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water-filling solutions play an important role in the designs for wireless communications, e.g., transmit covariance matrix design. A traditional physical understanding is to use the analogy of pouring water over a pool with fluctuating bottom. Numerous variants of water-filling solutions have been discovered during the evolution of wireless networks. To obtain the solution values, iterative computations are required, even for simple cases with compact mathematical formulations. Thus, algorithm design is a key issue for the practical use of water-filling solutions, which however has been given marginal attention in the literature. Many existing algorithms are designed on a case-by-case basis for the variations of water-filling solutions and/or with complex logics. In this paper, a new viewpoint for water-filling solutions is proposed to understand the problem dynamically by considering changes in the increasing rates on different subchannels. This fresh viewpoint provides a useful mechanism and fundamental information for finding the optimization solution values. Based on this new understanding, a novel and comprehensive method for practical water-filling algorithm design is proposed, which can be used for systems with various performance metrics and power constraints, even for systems with imperfect channel state information (CSI).
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2020.2973488