Dictionary-Based Tensor Canonical Polyadic Decomposition

To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition, which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed, which enables high-dimens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2018-04, Vol.66 (7), p.1876-1889
Hauptverfasser: Cohen, Jeremy Emile, Gillis, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition, which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed, which enables high-dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2017.2777393