A Tutorial on Bernoulli Filters: Theory, Implementation and Applications

Bernoulli filters are a class of exact Bayesian filters for non-linear/non-Gaussian recursive estimation of dynamic systems, recently emerged from the random set theoretical framework. The common feature of Bernoulli filters is that they are designed for stochastic dynamic systems which randomly swi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2013-07, Vol.61 (13), p.3406-3430
Hauptverfasser: Ristic, B., Ba-Tuong Vo, Ba-Ngu Vo, Farina, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bernoulli filters are a class of exact Bayesian filters for non-linear/non-Gaussian recursive estimation of dynamic systems, recently emerged from the random set theoretical framework. The common feature of Bernoulli filters is that they are designed for stochastic dynamic systems which randomly switch on and off. The applications are primarily in target tracking, where the switching process models target appearance or disappearance from the surveillance volume. The concept, however, is applicable to a range of dynamic phenomena, such as epidemics, pollution, social trends, etc. Bernoulli filters in general have no analytic solution and are implemented as particle filters or Gaussian sum filters. This tutorial paper reviews the theory of Bernoulli filters as well as their implementation for different measurement models. The theory is backed up by applications in sensor networks, bearings-only tracking, passive radar/sonar surveillance, visual tracking, monitoring/prediction of an epidemic and tracking using natural language statements. More advanced topics of smoothing, multi-target detection/tracking, parameter estimation and sensor control are briefly reviewed with pointers for further reading.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2013.2257765