Cramér-Rao-Induced Bounds for CANDECOMP/PARAFAC Tensor Decomposition

This paper presents a Cramér-Rao lower bound (CRLB) on the variance of unbiased estimates of factor matrices in Canonical Polyadic (CP) or CANDECOMP/PARAFAC (CP) decompositions of a tensor from noisy observations, (i.e., the tensor plus a random Gaussian i.i.d. tensor). A novel expression is derive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2013-04, Vol.61 (8), p.1986-1997
Hauptverfasser: Tichavsky, P., Anh Huy Phan, Koldovsky, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a Cramér-Rao lower bound (CRLB) on the variance of unbiased estimates of factor matrices in Canonical Polyadic (CP) or CANDECOMP/PARAFAC (CP) decompositions of a tensor from noisy observations, (i.e., the tensor plus a random Gaussian i.i.d. tensor). A novel expression is derived for a bound on the mean square angular error of factors along a selected dimension of a tensor of an arbitrary dimension. The expression needs less operations for computing the bound, O ( NR 6 ), than the best existing state-of-the art algorithm, O ( N 3 R 6 ) operations, where N and R are the tensor order and the tensor rank. Insightful expressions are derived for tensors of rank 1 and rank 2 of arbitrary dimension and for tensors of arbitrary dimension and rank, where two factor matrices have orthogonal columns. The results can be used as a gauge of performance of different approximate CP decomposition algorithms, prediction of their accuracy, and for checking stability of a given decomposition of a tensor (condition whether the CRLB is finite or not). A novel expression is derived for a Hessian matrix needed in popular damped Gauss-Newton method for solving the CP decomposition of tensors with missing elements. Beside computing the CRLB for these tensors the expression may serve for design of damped Gauss-Newton algorithm for the decomposition.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2013.2245660