Sparse Distributed Learning Based on Diffusion Adaptation

This article proposes diffusion LMS strategies for distributed estimation over adaptive networks that are able to exploit sparsity in the underlying system model. The approach relies on convex regularization, common in compressive sensing, to enhance the detection of sparsity via a diffusive process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2013-03, Vol.61 (6), p.1419-1433
Hauptverfasser: Di Lorenzo, P., Sayed, A. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposes diffusion LMS strategies for distributed estimation over adaptive networks that are able to exploit sparsity in the underlying system model. The approach relies on convex regularization, common in compressive sensing, to enhance the detection of sparsity via a diffusive process over the network. The resulting algorithms endow networks with learning abilities and allow them to learn the sparse structure from the incoming data in real-time, and also to track variations in the sparsity of the model. We provide convergence and mean-square performance analysis of the proposed method and show under what conditions it outperforms the unregularized diffusion version. We also show how to adaptively select the regularization parameter. Simulation results illustrate the advantage of the proposed filters for sparse data recovery.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2012.2232663