Persymmetric Parametric Adaptive Matched Filter for Multichannel Adaptive Signal Detection
This correspondence considers a parametric approach for multichannel adaptive signal detection in Gaussian disturbance which can be modeled as a multichannel autoregressive (AR) process and, moreover, possesses a persymmetric structure induced by a symmetric antenna geometry. By introducing the pers...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2012-06, Vol.60 (6), p.3322-3328 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This correspondence considers a parametric approach for multichannel adaptive signal detection in Gaussian disturbance which can be modeled as a multichannel autoregressive (AR) process and, moreover, possesses a persymmetric structure induced by a symmetric antenna geometry. By introducing the persymmetric AR (PAR) modeling for the disturbance, a persymmetric parametric adaptive matched filter (Per-PAMF) is proposed. The developed Per-PAMF extends the classical PAMF by exploiting the underlying persymmetric properties and, hence, improves the detection performance in training-limited scenarios. The performance of the proposed Per-PAMF is examined by the Monte Carlo simulations and simulation results demonstrate the effectiveness of the Per-PAMF compared with the conventional PAMF and nonparametric detectors. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2012.2190411 |