MDL Denoising Revisited

We refine and extend an earlier minimum description length (MDL) denoising criterion for wavelet-based denoising. We start by showing that the denoising problem can be reformulated as a clustering problem, where the goal is to obtain separate clusters for informative and noninformative wavelet coeff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2009-09, Vol.57 (9), p.3347-3360
Hauptverfasser: Roos, T., Myllymaki, P., Rissanen, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We refine and extend an earlier minimum description length (MDL) denoising criterion for wavelet-based denoising. We start by showing that the denoising problem can be reformulated as a clustering problem, where the goal is to obtain separate clusters for informative and noninformative wavelet coefficients, respectively. This suggests two refinements, adding a code-length for the model index, and extending the model in order to account for subband-dependent coefficient distributions. A third refinement is the derivation of soft thresholding inspired by predictive universal coding with weighted mixtures. We propose a practical method incorporating all three refinements, which is shown to achieve good performance and robustness in denoising both artificial and natural signals.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2009.2021633