Stochastic blind equalization based on PDF fitting using Parzen estimator
This work presents a new blind equalization approach that aims to force the probability density function (pdf) at the equalizer output to match the known constellation pdf. Quadratic distance between pdf's is used as the cost function to be minimized. The proposed method relies on the Parzen wi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2005-02, Vol.53 (2), p.696-704 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 704 |
---|---|
container_issue | 2 |
container_start_page | 696 |
container_title | IEEE transactions on signal processing |
container_volume | 53 |
creator | Lazaro, M. Santamaria, I. Erdogmus, D. Hild, K.E. Pantaleon, C. Principe, J.C. |
description | This work presents a new blind equalization approach that aims to force the probability density function (pdf) at the equalizer output to match the known constellation pdf. Quadratic distance between pdf's is used as the cost function to be minimized. The proposed method relies on the Parzen window method to estimate the data pdf and is implemented by a stochastic gradient descent algorithm. The kernel size of the Parzen estimator allows a dual mode switch or a soft switch between blind and decision-directed equalization. The proposed method converges faster than the constant modulus algorithm (CMA) working at the symbol rate, with a similar computational burden, and reduces the residual error of the CMA in multilevel modulations at the same time. A comparison with the most common blind techniques is presented. |
doi_str_mv | 10.1109/TSP.2004.840767 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2004_840767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1381760</ieee_id><sourcerecordid>2361964411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e86dfe2726a791d5483b30c50e46e8650c1fca77bba7d5a1535523e39513c8263</originalsourceid><addsrcrecordid>eNp9kc1LwzAYxoMoOKdnD16KoHjpljSfPcp0Ohg42ARvIU1TzejaLWkP7q83tYOBByEkL7y_50nePABcIzhCCKbj1XIxSiAkI0EgZ_wEDFBKUAwJZ6ehhhTHVPCPc3Dh_RpCREjKBmC2bGr9pXxjdZSVtsojs2tVafeqsXUVZcqbPArF4mkaFbZpbPUZtb7bF8rtTRWZIN2opnaX4KxQpTdXh3MI3qfPq8lrPH97mU0e57HGImliI1hemIQnTPEU5ZQInGGoKTSEhR6FGhVacZ5liudUIYopTbDBKUVYi4ThIbjvfbeu3rXhermxXpuyVJWpWy8TAdPwHx348C-IGEeE8uTX8_YPuq5bV4UxpGApIt1zAzTuIe1q750p5NaF0d23RFB2EcgQgewikH0EQXF3sFVeq7JwqtLWH2WMdIsE7qbnrDHm2MYCcQbxDwGrjUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869142726</pqid></control><display><type>article</type><title>Stochastic blind equalization based on PDF fitting using Parzen estimator</title><source>IEEE Electronic Library (IEL)</source><creator>Lazaro, M. ; Santamaria, I. ; Erdogmus, D. ; Hild, K.E. ; Pantaleon, C. ; Principe, J.C.</creator><creatorcontrib>Lazaro, M. ; Santamaria, I. ; Erdogmus, D. ; Hild, K.E. ; Pantaleon, C. ; Principe, J.C.</creatorcontrib><description>This work presents a new blind equalization approach that aims to force the probability density function (pdf) at the equalizer output to match the known constellation pdf. Quadratic distance between pdf's is used as the cost function to be minimized. The proposed method relies on the Parzen window method to estimate the data pdf and is implemented by a stochastic gradient descent algorithm. The kernel size of the Parzen estimator allows a dual mode switch or a soft switch between blind and decision-directed equalization. The proposed method converges faster than the constant modulus algorithm (CMA) working at the symbol rate, with a similar computational burden, and reduces the residual error of the CMA in multilevel modulations at the same time. A comparison with the most common blind techniques is presented.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2004.840767</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Blind equalization ; Blind equalizers ; Blinds ; CMA ; Convergence ; Cost function ; Detection, estimation, filtering, equalization, prediction ; Equalization ; Estimators ; Exact sciences and technology ; Higher order statistics ; Impedance matching ; information theory ; Information, signal and communications theory ; Intersymbol interference ; Nonlinear filters ; Parzen windowing ; PDF ; Probability density function ; Probability density functions ; Signal and communications theory ; Signal, noise ; Stochastic processes ; Stochasticity ; Switches ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2005-02, Vol.53 (2), p.696-704</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e86dfe2726a791d5483b30c50e46e8650c1fca77bba7d5a1535523e39513c8263</citedby><cites>FETCH-LOGICAL-c382t-e86dfe2726a791d5483b30c50e46e8650c1fca77bba7d5a1535523e39513c8263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1381760$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1381760$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16416414$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lazaro, M.</creatorcontrib><creatorcontrib>Santamaria, I.</creatorcontrib><creatorcontrib>Erdogmus, D.</creatorcontrib><creatorcontrib>Hild, K.E.</creatorcontrib><creatorcontrib>Pantaleon, C.</creatorcontrib><creatorcontrib>Principe, J.C.</creatorcontrib><title>Stochastic blind equalization based on PDF fitting using Parzen estimator</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This work presents a new blind equalization approach that aims to force the probability density function (pdf) at the equalizer output to match the known constellation pdf. Quadratic distance between pdf's is used as the cost function to be minimized. The proposed method relies on the Parzen window method to estimate the data pdf and is implemented by a stochastic gradient descent algorithm. The kernel size of the Parzen estimator allows a dual mode switch or a soft switch between blind and decision-directed equalization. The proposed method converges faster than the constant modulus algorithm (CMA) working at the symbol rate, with a similar computational burden, and reduces the residual error of the CMA in multilevel modulations at the same time. A comparison with the most common blind techniques is presented.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Blind equalization</subject><subject>Blind equalizers</subject><subject>Blinds</subject><subject>CMA</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Equalization</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Higher order statistics</subject><subject>Impedance matching</subject><subject>information theory</subject><subject>Information, signal and communications theory</subject><subject>Intersymbol interference</subject><subject>Nonlinear filters</subject><subject>Parzen windowing</subject><subject>PDF</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Switches</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1LwzAYxoMoOKdnD16KoHjpljSfPcp0Ohg42ARvIU1TzejaLWkP7q83tYOBByEkL7y_50nePABcIzhCCKbj1XIxSiAkI0EgZ_wEDFBKUAwJZ6ehhhTHVPCPc3Dh_RpCREjKBmC2bGr9pXxjdZSVtsojs2tVafeqsXUVZcqbPArF4mkaFbZpbPUZtb7bF8rtTRWZIN2opnaX4KxQpTdXh3MI3qfPq8lrPH97mU0e57HGImliI1hemIQnTPEU5ZQInGGoKTSEhR6FGhVacZ5liudUIYopTbDBKUVYi4ThIbjvfbeu3rXhermxXpuyVJWpWy8TAdPwHx348C-IGEeE8uTX8_YPuq5bV4UxpGApIt1zAzTuIe1q750p5NaF0d23RFB2EcgQgewikH0EQXF3sFVeq7JwqtLWH2WMdIsE7qbnrDHm2MYCcQbxDwGrjUY</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Lazaro, M.</creator><creator>Santamaria, I.</creator><creator>Erdogmus, D.</creator><creator>Hild, K.E.</creator><creator>Pantaleon, C.</creator><creator>Principe, J.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050201</creationdate><title>Stochastic blind equalization based on PDF fitting using Parzen estimator</title><author>Lazaro, M. ; Santamaria, I. ; Erdogmus, D. ; Hild, K.E. ; Pantaleon, C. ; Principe, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e86dfe2726a791d5483b30c50e46e8650c1fca77bba7d5a1535523e39513c8263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Blind equalization</topic><topic>Blind equalizers</topic><topic>Blinds</topic><topic>CMA</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Equalization</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Higher order statistics</topic><topic>Impedance matching</topic><topic>information theory</topic><topic>Information, signal and communications theory</topic><topic>Intersymbol interference</topic><topic>Nonlinear filters</topic><topic>Parzen windowing</topic><topic>PDF</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Switches</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazaro, M.</creatorcontrib><creatorcontrib>Santamaria, I.</creatorcontrib><creatorcontrib>Erdogmus, D.</creatorcontrib><creatorcontrib>Hild, K.E.</creatorcontrib><creatorcontrib>Pantaleon, C.</creatorcontrib><creatorcontrib>Principe, J.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lazaro, M.</au><au>Santamaria, I.</au><au>Erdogmus, D.</au><au>Hild, K.E.</au><au>Pantaleon, C.</au><au>Principe, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic blind equalization based on PDF fitting using Parzen estimator</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2005-02-01</date><risdate>2005</risdate><volume>53</volume><issue>2</issue><spage>696</spage><epage>704</epage><pages>696-704</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This work presents a new blind equalization approach that aims to force the probability density function (pdf) at the equalizer output to match the known constellation pdf. Quadratic distance between pdf's is used as the cost function to be minimized. The proposed method relies on the Parzen window method to estimate the data pdf and is implemented by a stochastic gradient descent algorithm. The kernel size of the Parzen estimator allows a dual mode switch or a soft switch between blind and decision-directed equalization. The proposed method converges faster than the constant modulus algorithm (CMA) working at the symbol rate, with a similar computational burden, and reduces the residual error of the CMA in multilevel modulations at the same time. A comparison with the most common blind techniques is presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2004.840767</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2005-02, Vol.53 (2), p.696-704 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2004_840767 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Blind equalization Blind equalizers Blinds CMA Convergence Cost function Detection, estimation, filtering, equalization, prediction Equalization Estimators Exact sciences and technology Higher order statistics Impedance matching information theory Information, signal and communications theory Intersymbol interference Nonlinear filters Parzen windowing Probability density function Probability density functions Signal and communications theory Signal, noise Stochastic processes Stochasticity Switches Telecommunications and information theory |
title | Stochastic blind equalization based on PDF fitting using Parzen estimator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20blind%20equalization%20based%20on%20PDF%20fitting%20using%20Parzen%20estimator&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Lazaro,%20M.&rft.date=2005-02-01&rft.volume=53&rft.issue=2&rft.spage=696&rft.epage=704&rft.pages=696-704&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2004.840767&rft_dat=%3Cproquest_RIE%3E2361964411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869142726&rft_id=info:pmid/&rft_ieee_id=1381760&rfr_iscdi=true |