Stochastic blind equalization based on PDF fitting using Parzen estimator

This work presents a new blind equalization approach that aims to force the probability density function (pdf) at the equalizer output to match the known constellation pdf. Quadratic distance between pdf's is used as the cost function to be minimized. The proposed method relies on the Parzen wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2005-02, Vol.53 (2), p.696-704
Hauptverfasser: Lazaro, M., Santamaria, I., Erdogmus, D., Hild, K.E., Pantaleon, C., Principe, J.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 704
container_issue 2
container_start_page 696
container_title IEEE transactions on signal processing
container_volume 53
creator Lazaro, M.
Santamaria, I.
Erdogmus, D.
Hild, K.E.
Pantaleon, C.
Principe, J.C.
description This work presents a new blind equalization approach that aims to force the probability density function (pdf) at the equalizer output to match the known constellation pdf. Quadratic distance between pdf's is used as the cost function to be minimized. The proposed method relies on the Parzen window method to estimate the data pdf and is implemented by a stochastic gradient descent algorithm. The kernel size of the Parzen estimator allows a dual mode switch or a soft switch between blind and decision-directed equalization. The proposed method converges faster than the constant modulus algorithm (CMA) working at the symbol rate, with a similar computational burden, and reduces the residual error of the CMA in multilevel modulations at the same time. A comparison with the most common blind techniques is presented.
doi_str_mv 10.1109/TSP.2004.840767
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2004_840767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1381760</ieee_id><sourcerecordid>2361964411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e86dfe2726a791d5483b30c50e46e8650c1fca77bba7d5a1535523e39513c8263</originalsourceid><addsrcrecordid>eNp9kc1LwzAYxoMoOKdnD16KoHjpljSfPcp0Ohg42ARvIU1TzejaLWkP7q83tYOBByEkL7y_50nePABcIzhCCKbj1XIxSiAkI0EgZ_wEDFBKUAwJZ6ehhhTHVPCPc3Dh_RpCREjKBmC2bGr9pXxjdZSVtsojs2tVafeqsXUVZcqbPArF4mkaFbZpbPUZtb7bF8rtTRWZIN2opnaX4KxQpTdXh3MI3qfPq8lrPH97mU0e57HGImliI1hemIQnTPEU5ZQInGGoKTSEhR6FGhVacZ5liudUIYopTbDBKUVYi4ThIbjvfbeu3rXhermxXpuyVJWpWy8TAdPwHx348C-IGEeE8uTX8_YPuq5bV4UxpGApIt1zAzTuIe1q750p5NaF0d23RFB2EcgQgewikH0EQXF3sFVeq7JwqtLWH2WMdIsE7qbnrDHm2MYCcQbxDwGrjUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869142726</pqid></control><display><type>article</type><title>Stochastic blind equalization based on PDF fitting using Parzen estimator</title><source>IEEE Electronic Library (IEL)</source><creator>Lazaro, M. ; Santamaria, I. ; Erdogmus, D. ; Hild, K.E. ; Pantaleon, C. ; Principe, J.C.</creator><creatorcontrib>Lazaro, M. ; Santamaria, I. ; Erdogmus, D. ; Hild, K.E. ; Pantaleon, C. ; Principe, J.C.</creatorcontrib><description>This work presents a new blind equalization approach that aims to force the probability density function (pdf) at the equalizer output to match the known constellation pdf. Quadratic distance between pdf's is used as the cost function to be minimized. The proposed method relies on the Parzen window method to estimate the data pdf and is implemented by a stochastic gradient descent algorithm. The kernel size of the Parzen estimator allows a dual mode switch or a soft switch between blind and decision-directed equalization. The proposed method converges faster than the constant modulus algorithm (CMA) working at the symbol rate, with a similar computational burden, and reduces the residual error of the CMA in multilevel modulations at the same time. A comparison with the most common blind techniques is presented.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2004.840767</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Blind equalization ; Blind equalizers ; Blinds ; CMA ; Convergence ; Cost function ; Detection, estimation, filtering, equalization, prediction ; Equalization ; Estimators ; Exact sciences and technology ; Higher order statistics ; Impedance matching ; information theory ; Information, signal and communications theory ; Intersymbol interference ; Nonlinear filters ; Parzen windowing ; PDF ; Probability density function ; Probability density functions ; Signal and communications theory ; Signal, noise ; Stochastic processes ; Stochasticity ; Switches ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2005-02, Vol.53 (2), p.696-704</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e86dfe2726a791d5483b30c50e46e8650c1fca77bba7d5a1535523e39513c8263</citedby><cites>FETCH-LOGICAL-c382t-e86dfe2726a791d5483b30c50e46e8650c1fca77bba7d5a1535523e39513c8263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1381760$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1381760$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16416414$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lazaro, M.</creatorcontrib><creatorcontrib>Santamaria, I.</creatorcontrib><creatorcontrib>Erdogmus, D.</creatorcontrib><creatorcontrib>Hild, K.E.</creatorcontrib><creatorcontrib>Pantaleon, C.</creatorcontrib><creatorcontrib>Principe, J.C.</creatorcontrib><title>Stochastic blind equalization based on PDF fitting using Parzen estimator</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This work presents a new blind equalization approach that aims to force the probability density function (pdf) at the equalizer output to match the known constellation pdf. Quadratic distance between pdf's is used as the cost function to be minimized. The proposed method relies on the Parzen window method to estimate the data pdf and is implemented by a stochastic gradient descent algorithm. The kernel size of the Parzen estimator allows a dual mode switch or a soft switch between blind and decision-directed equalization. The proposed method converges faster than the constant modulus algorithm (CMA) working at the symbol rate, with a similar computational burden, and reduces the residual error of the CMA in multilevel modulations at the same time. A comparison with the most common blind techniques is presented.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Blind equalization</subject><subject>Blind equalizers</subject><subject>Blinds</subject><subject>CMA</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Equalization</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Higher order statistics</subject><subject>Impedance matching</subject><subject>information theory</subject><subject>Information, signal and communications theory</subject><subject>Intersymbol interference</subject><subject>Nonlinear filters</subject><subject>Parzen windowing</subject><subject>PDF</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Switches</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1LwzAYxoMoOKdnD16KoHjpljSfPcp0Ohg42ARvIU1TzejaLWkP7q83tYOBByEkL7y_50nePABcIzhCCKbj1XIxSiAkI0EgZ_wEDFBKUAwJZ6ehhhTHVPCPc3Dh_RpCREjKBmC2bGr9pXxjdZSVtsojs2tVafeqsXUVZcqbPArF4mkaFbZpbPUZtb7bF8rtTRWZIN2opnaX4KxQpTdXh3MI3qfPq8lrPH97mU0e57HGImliI1hemIQnTPEU5ZQInGGoKTSEhR6FGhVacZ5liudUIYopTbDBKUVYi4ThIbjvfbeu3rXhermxXpuyVJWpWy8TAdPwHx348C-IGEeE8uTX8_YPuq5bV4UxpGApIt1zAzTuIe1q750p5NaF0d23RFB2EcgQgewikH0EQXF3sFVeq7JwqtLWH2WMdIsE7qbnrDHm2MYCcQbxDwGrjUY</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Lazaro, M.</creator><creator>Santamaria, I.</creator><creator>Erdogmus, D.</creator><creator>Hild, K.E.</creator><creator>Pantaleon, C.</creator><creator>Principe, J.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050201</creationdate><title>Stochastic blind equalization based on PDF fitting using Parzen estimator</title><author>Lazaro, M. ; Santamaria, I. ; Erdogmus, D. ; Hild, K.E. ; Pantaleon, C. ; Principe, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e86dfe2726a791d5483b30c50e46e8650c1fca77bba7d5a1535523e39513c8263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Blind equalization</topic><topic>Blind equalizers</topic><topic>Blinds</topic><topic>CMA</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Equalization</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Higher order statistics</topic><topic>Impedance matching</topic><topic>information theory</topic><topic>Information, signal and communications theory</topic><topic>Intersymbol interference</topic><topic>Nonlinear filters</topic><topic>Parzen windowing</topic><topic>PDF</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Switches</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazaro, M.</creatorcontrib><creatorcontrib>Santamaria, I.</creatorcontrib><creatorcontrib>Erdogmus, D.</creatorcontrib><creatorcontrib>Hild, K.E.</creatorcontrib><creatorcontrib>Pantaleon, C.</creatorcontrib><creatorcontrib>Principe, J.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lazaro, M.</au><au>Santamaria, I.</au><au>Erdogmus, D.</au><au>Hild, K.E.</au><au>Pantaleon, C.</au><au>Principe, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic blind equalization based on PDF fitting using Parzen estimator</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2005-02-01</date><risdate>2005</risdate><volume>53</volume><issue>2</issue><spage>696</spage><epage>704</epage><pages>696-704</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This work presents a new blind equalization approach that aims to force the probability density function (pdf) at the equalizer output to match the known constellation pdf. Quadratic distance between pdf's is used as the cost function to be minimized. The proposed method relies on the Parzen window method to estimate the data pdf and is implemented by a stochastic gradient descent algorithm. The kernel size of the Parzen estimator allows a dual mode switch or a soft switch between blind and decision-directed equalization. The proposed method converges faster than the constant modulus algorithm (CMA) working at the symbol rate, with a similar computational burden, and reduces the residual error of the CMA in multilevel modulations at the same time. A comparison with the most common blind techniques is presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2004.840767</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2005-02, Vol.53 (2), p.696-704
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2004_840767
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Blind equalization
Blind equalizers
Blinds
CMA
Convergence
Cost function
Detection, estimation, filtering, equalization, prediction
Equalization
Estimators
Exact sciences and technology
Higher order statistics
Impedance matching
information theory
Information, signal and communications theory
Intersymbol interference
Nonlinear filters
Parzen windowing
PDF
Probability density function
Probability density functions
Signal and communications theory
Signal, noise
Stochastic processes
Stochasticity
Switches
Telecommunications and information theory
title Stochastic blind equalization based on PDF fitting using Parzen estimator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20blind%20equalization%20based%20on%20PDF%20fitting%20using%20Parzen%20estimator&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Lazaro,%20M.&rft.date=2005-02-01&rft.volume=53&rft.issue=2&rft.spage=696&rft.epage=704&rft.pages=696-704&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2004.840767&rft_dat=%3Cproquest_RIE%3E2361964411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869142726&rft_id=info:pmid/&rft_ieee_id=1381760&rfr_iscdi=true