Stochastic blind equalization based on PDF fitting using Parzen estimator

This work presents a new blind equalization approach that aims to force the probability density function (pdf) at the equalizer output to match the known constellation pdf. Quadratic distance between pdf's is used as the cost function to be minimized. The proposed method relies on the Parzen wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2005-02, Vol.53 (2), p.696-704
Hauptverfasser: Lazaro, M., Santamaria, I., Erdogmus, D., Hild, K.E., Pantaleon, C., Principe, J.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a new blind equalization approach that aims to force the probability density function (pdf) at the equalizer output to match the known constellation pdf. Quadratic distance between pdf's is used as the cost function to be minimized. The proposed method relies on the Parzen window method to estimate the data pdf and is implemented by a stochastic gradient descent algorithm. The kernel size of the Parzen estimator allows a dual mode switch or a soft switch between blind and decision-directed equalization. The proposed method converges faster than the constant modulus algorithm (CMA) working at the symbol rate, with a similar computational burden, and reduces the residual error of the CMA in multilevel modulations at the same time. A comparison with the most common blind techniques is presented.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2004.840767