Low-Temperature Oxide Wafer Bonding for 3-D Integration: Chemistry of Bulk Oxide Matters
The effect of bulk chemistry of deposited oxide materials on the eventual wafer bonding energy was fundamentally studied. Although low-temperature silicon oxide (LTO) and tetraethyl orthosilicate (TEOS) exhibited the same bulk density, and nitrogen plasma generated a higher degree of surface activat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on semiconductor manufacturing 2014-08, Vol.27 (3), p.426-430 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of bulk chemistry of deposited oxide materials on the eventual wafer bonding energy was fundamentally studied. Although low-temperature silicon oxide (LTO) and tetraethyl orthosilicate (TEOS) exhibited the same bulk density, and nitrogen plasma generated a higher degree of surface activation for TEOS than LTO, using LTO as the bonding oxide resulted in a much higher bonding energy than TEOS. This was attributed to the relatively high percentage of hydrogen-bonded silanol groups in LTO, which pointed to the existence of fine defect areas in LTO that would better accommodate the water molecules generated later by the interfacial condensation reactions. A pre-bonding baking step was found favorable for LTO wafer bonding. |
---|---|
ISSN: | 0894-6507 1558-2345 |
DOI: | 10.1109/TSM.2014.2323941 |