Characterization for High-Performance CMOS Using In-Wafer Advanced Kelvin-Contact Device Structure
In this work, a new electrical characterization method for MOSFETs using an in-wafer Kelvin-contact device structure is developed. The developed method can eliminate the parasitic series resistance such as resistance in source/drain terminals of MOSFETs, in metal wires on wafers and in a measurement...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on semiconductor manufacturing 2009-02, Vol.22 (1), p.126-133 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, a new electrical characterization method for MOSFETs using an in-wafer Kelvin-contact device structure is developed. The developed method can eliminate the parasitic series resistance such as resistance in source/drain terminals of MOSFETs, in metal wires on wafers and in a measurement system. Using the developed method, we can measure and analyze the short channel transistors' intrinsic current-voltage characteristics as well as the quantitative effects of the parasitic series resistance to the device performance, very stably and accurately. In addition, a framework for the characterization of inversion layer mobility in ultrathin gate insulator MOSFETs with large gate current is provided. Based on the framework, the developed method is introduced as a suitable mobility characterization method. |
---|---|
ISSN: | 0894-6507 1558-2345 |
DOI: | 10.1109/TSM.2008.2010743 |