Collision and Deadlock Avoidance in Multirobot Systems: A Distributed Approach

Collision avoidance is a critical problem in motion planning and control of multirobot systems. Moreover, it may induce deadlocks during the procedure to avoid collisions. In this paper, we study the motion control of multirobot systems where each robot has its own predetermined and closed path to e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2017-07, Vol.47 (7), p.1712-1726
Hauptverfasser: Zhou, Yuan, Hu, Hesuan, Liu, Yang, Ding, Zuohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Collision avoidance is a critical problem in motion planning and control of multirobot systems. Moreover, it may induce deadlocks during the procedure to avoid collisions. In this paper, we study the motion control of multirobot systems where each robot has its own predetermined and closed path to execute persistent motion. We propose a real-time and distributed algorithm for both collision and deadlock avoidance by repeatedly stopping and resuming robots. The motion of each robot is first modeled as a labeled transition system, and then controlled by a distributed algorithm to avoid collisions and deadlocks. Each robot can execute the algorithm autonomously and real-timely by checking whether its succeeding state is occupied and whether the one-step move can cause deadlocks. Performance analysis of the proposed algorithm is also conducted. The conclusion is that the algorithm is not only practically operative but also maximally permissive. A set of simulations for a system with four robots are carried out in MATLAB. The results also validate the effectiveness of our algorithm.
ISSN:2168-2216
2168-2232
DOI:10.1109/TSMC.2017.2670643