Adaptive Neural Tracking Control for Nonlinear Time-Delay Systems With Full State Constraints

In this paper, an adaptive neural tracking control strategy is presented to stabilize a class of uncertain nonlinear strict-feedback systems with the full state constraints and time-delays. Because the full state constraints and time-delays appear simultaneously in the systems, they lead to the diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2017-07, Vol.47 (7), p.1590-1601
Hauptverfasser: Li, Da-Peng, Li, Dong-Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an adaptive neural tracking control strategy is presented to stabilize a class of uncertain nonlinear strict-feedback systems with the full state constraints and time-delays. Because the full state constraints and time-delays appear simultaneously in the systems, they lead to the difficulties in the controller design. The opportune barrier Lyapunov functions (BLFs) are designed to ensure that the states constraints are not violated. The novel backstepping procedures with BLFs are utilized to eliminate the effect of the nonlinear system which caused by the time-delays. Finally, it is proved that all the signals in the closed-loop system are semiglobal uniformly ultimately bounded and the tracking errors converge to a small interval based on proposed Lyapunov and backstepping design method. The effectiveness of the proposed scheme is demonstrated by a simulation in this paper.
ISSN:2168-2216
2168-2232
DOI:10.1109/TSMC.2016.2637063