The Partial-Value Association Discovery Algorithm to Learn Multilayer Structural System Models From System Data

Many systems exist without us knowing structural system models and require us to discover structural system models from system data. A major shortcoming of current statistical modeling and data mining techniques is their focus on building relations of variables that hold for all values of variables....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2017-12, Vol.47 (12), p.3377-3385
1. Verfasser: Ye, Nong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many systems exist without us knowing structural system models and require us to discover structural system models from system data. A major shortcoming of current statistical modeling and data mining techniques is their focus on building relations of variables that hold for all values of variables. This paper presents the new partial-value association discovery (PVAD) algorithm to discover relations of variables that may exist for only certain values or different value ranges of variables and to use these partial-value variable relations for constructing structural system models. The PVAD algorithm along with its performance and computational complexity is presented.
ISSN:2168-2216
2168-2232
DOI:10.1109/TSMC.2016.2585656