An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme

In this paper, a special nonlinear bilevel programming problem (nonlinear BLPP) is transformed into an equivalent single objective nonlinear programming problem. To solve the equivalent problem effectively, we first construct a specific optimization problem with two objectives. By solving the specif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on human-machine systems 2005-05, Vol.35 (2), p.221-232
Hauptverfasser: Wang, Y., Jiao, Y.-C., Li, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a special nonlinear bilevel programming problem (nonlinear BLPP) is transformed into an equivalent single objective nonlinear programming problem. To solve the equivalent problem effectively, we first construct a specific optimization problem with two objectives. By solving the specific problem, we can decrease the leader's objective value, identify the quality of any feasible solution from infeasible solutions and the quality of two feasible solutions for the equivalent single objective optimization problem, force the infeasible solutions moving toward the feasible region, and improve the feasible solutions gradually. We then propose a new constraint-handling scheme and a specific-design crossover operator. The new constraint-handling scheme can make the individuals satisfy all linear constraints exactly and the nonlinear constraints approximately. The crossover operator can generate high quality potential offspring. Based on the constraint-handling scheme and the crossover operator, we propose a new evolutionary algorithm and prove its global convergence. A distinguishing feature of the algorithm is that it can be used to handle nonlinear BLPPs with nondifferentiable leader's objective functions. Finally, simulations on 31 benchmark problems, 12 of which have nondifferentiable leader's objective functions, are made and the results demonstrate the effectiveness of the proposed algorithm.
ISSN:1094-6977
2168-2291
1558-2442
2168-2305
DOI:10.1109/TSMCC.2004.841908