On Siphon Computation for Deadlock Control in a Class of Petri Nets

As a structural object, siphons are well recognized in the analysis and control of deadlocks in resource allocation systems modeled with Petri nets. Many deadlock prevention policies characterize the deadlock behavior of the systems in terms of siphons and utilize this characterization to avoid dead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2008-05, Vol.38 (3), p.667-679
Hauptverfasser: ZhiWu Li, ZhiWu Li, MengChu Zhou, MengChu Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a structural object, siphons are well recognized in the analysis and control of deadlocks in resource allocation systems modeled with Petri nets. Many deadlock prevention policies characterize the deadlock behavior of the systems in terms of siphons and utilize this characterization to avoid deadlocks. This paper develops a novel methodology to find interesting siphons for deadlock control purposes in a class of Petri nets, i.e., a system of simple sequential processes with resources . Resource circuits in an are first detected, from which, in general, a small portion of emptiable minimal siphons can be derived. The remaining emptiable ones can be found by their composition. A polynomial-time algorithm for finding the set of elementary siphons is proposed, which avoids complete siphon enumeration. It is shown that a dependent siphon can always be controlled by properly supervising its elementary siphons. A computationally efficient deadlock control policy is accordingly developed. Experimental study shows the efficiency of the proposed siphon computation approach.
ISSN:1083-4427
2168-2216
1558-2426
2168-2232
DOI:10.1109/TSMCA.2008.918605