Providing Justifications in Recommender Systems
Recommender systems are gaining widespread acceptance in e-commerce applications to confront the ldquoinformation overloadrdquo problem. Providing justification to a recommendation gives credibility to a recommender system. Some recommender systems (Amazon.com, etc.) try to explain their recommendat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2008-11, Vol.38 (6), p.1262-1272 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1272 |
---|---|
container_issue | 6 |
container_start_page | 1262 |
container_title | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans |
container_volume | 38 |
creator | Symeonidis, P. Nanopoulos, A. Manolopoulos, Y. |
description | Recommender systems are gaining widespread acceptance in e-commerce applications to confront the ldquoinformation overloadrdquo problem. Providing justification to a recommendation gives credibility to a recommender system. Some recommender systems (Amazon.com, etc.) try to explain their recommendations, in an effort to regain customer acceptance and trust. However, their explanations are not sufficient, because they are based solely on rating or navigational data, ignoring the content data. Several systems have proposed the combination of content data with rating data to provide more accurate recommendations, but they cannot provide qualitative justifications. In this paper, we propose a novel approach that attains both accurate and justifiable recommendations. We construct a feature profile for the users to reveal their favorite features. Moreover, we group users into biclusters (i.e., groups of users which exhibit highly correlated ratings on groups of items) to exploit partial matching between the preferences of the target user and each group of users. We have evaluated the quality of our justifications with an objective metric in two real data sets (Reuters and MovieLens), showing the superiority of the proposed method over existing approaches. |
doi_str_mv | 10.1109/TSMCA.2008.2003969 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSMCA_2008_2003969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4648950</ieee_id><sourcerecordid>2323138211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-76ad1e76b7cbcf907a16e3e4c1e9cc903456a126ee5d20e1622f8ed1c1bb2e8f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFb_gF6C97SzH9mPYyl-UlFsPS_JZiJbTFJ3E6H_3tQUL_PO4X1m4CHkmsKMUjDzzfpluZgxAH0Y3EhzQiY0y3TKBJOnww6ap0IwdU4uYtwCUCGMmJD5W2h_fOmbz-S5j52vvMs73zYx8U3yjq6ta2xKDMl6Hzus4yU5q_KviFfHnJKP-7vN8jFdvT48LRer1DEjulTJvKSoZKFc4SoDKqcSOQpH0ThngItM5pRJxKxkgFQyVmksqaNFwVBXfEpux7u70H73GDu7bfvQDC-tlowrrRQMJTaWXGhjDFjZXfB1HvaWgj14sX9e7MGLPXoZoJsR8oj4DwgptMmA_wIcnl7V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862378770</pqid></control><display><type>article</type><title>Providing Justifications in Recommender Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Symeonidis, P. ; Nanopoulos, A. ; Manolopoulos, Y.</creator><creatorcontrib>Symeonidis, P. ; Nanopoulos, A. ; Manolopoulos, Y.</creatorcontrib><description>Recommender systems are gaining widespread acceptance in e-commerce applications to confront the ldquoinformation overloadrdquo problem. Providing justification to a recommendation gives credibility to a recommender system. Some recommender systems (Amazon.com, etc.) try to explain their recommendations, in an effort to regain customer acceptance and trust. However, their explanations are not sufficient, because they are based solely on rating or navigational data, ignoring the content data. Several systems have proposed the combination of content data with rating data to provide more accurate recommendations, but they cannot provide qualitative justifications. In this paper, we propose a novel approach that attains both accurate and justifiable recommendations. We construct a feature profile for the users to reveal their favorite features. Moreover, we group users into biclusters (i.e., groups of users which exhibit highly correlated ratings on groups of items) to exploit partial matching between the preferences of the target user and each group of users. We have evaluated the quality of our justifications with an objective metric in two real data sets (Reuters and MovieLens), showing the superiority of the proposed method over existing approaches.</description><identifier>ISSN: 1083-4427</identifier><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 1558-2426</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMCA.2008.2003969</identifier><identifier>CODEN: ITSHFX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boosting ; Collaboration ; Collaborative filtering (CF) ; content-based filtering (CB) ; e-commerce ; Informatics ; Information filtering ; Information filters ; justification ; Marketing and sales ; Navigation ; Nearest neighbor searches ; Recommender systems ; Robots</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2008-11, Vol.38 (6), p.1262-1272</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-76ad1e76b7cbcf907a16e3e4c1e9cc903456a126ee5d20e1622f8ed1c1bb2e8f3</citedby><cites>FETCH-LOGICAL-c294t-76ad1e76b7cbcf907a16e3e4c1e9cc903456a126ee5d20e1622f8ed1c1bb2e8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4648950$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4648950$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Symeonidis, P.</creatorcontrib><creatorcontrib>Nanopoulos, A.</creatorcontrib><creatorcontrib>Manolopoulos, Y.</creatorcontrib><title>Providing Justifications in Recommender Systems</title><title>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</title><addtitle>TSMCA</addtitle><description>Recommender systems are gaining widespread acceptance in e-commerce applications to confront the ldquoinformation overloadrdquo problem. Providing justification to a recommendation gives credibility to a recommender system. Some recommender systems (Amazon.com, etc.) try to explain their recommendations, in an effort to regain customer acceptance and trust. However, their explanations are not sufficient, because they are based solely on rating or navigational data, ignoring the content data. Several systems have proposed the combination of content data with rating data to provide more accurate recommendations, but they cannot provide qualitative justifications. In this paper, we propose a novel approach that attains both accurate and justifiable recommendations. We construct a feature profile for the users to reveal their favorite features. Moreover, we group users into biclusters (i.e., groups of users which exhibit highly correlated ratings on groups of items) to exploit partial matching between the preferences of the target user and each group of users. We have evaluated the quality of our justifications with an objective metric in two real data sets (Reuters and MovieLens), showing the superiority of the proposed method over existing approaches.</description><subject>Boosting</subject><subject>Collaboration</subject><subject>Collaborative filtering (CF)</subject><subject>content-based filtering (CB)</subject><subject>e-commerce</subject><subject>Informatics</subject><subject>Information filtering</subject><subject>Information filters</subject><subject>justification</subject><subject>Marketing and sales</subject><subject>Navigation</subject><subject>Nearest neighbor searches</subject><subject>Recommender systems</subject><subject>Robots</subject><issn>1083-4427</issn><issn>2168-2216</issn><issn>1558-2426</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFb_gF6C97SzH9mPYyl-UlFsPS_JZiJbTFJ3E6H_3tQUL_PO4X1m4CHkmsKMUjDzzfpluZgxAH0Y3EhzQiY0y3TKBJOnww6ap0IwdU4uYtwCUCGMmJD5W2h_fOmbz-S5j52vvMs73zYx8U3yjq6ta2xKDMl6Hzus4yU5q_KviFfHnJKP-7vN8jFdvT48LRer1DEjulTJvKSoZKFc4SoDKqcSOQpH0ThngItM5pRJxKxkgFQyVmksqaNFwVBXfEpux7u70H73GDu7bfvQDC-tlowrrRQMJTaWXGhjDFjZXfB1HvaWgj14sX9e7MGLPXoZoJsR8oj4DwgptMmA_wIcnl7V</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Symeonidis, P.</creator><creator>Nanopoulos, A.</creator><creator>Manolopoulos, Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20081101</creationdate><title>Providing Justifications in Recommender Systems</title><author>Symeonidis, P. ; Nanopoulos, A. ; Manolopoulos, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-76ad1e76b7cbcf907a16e3e4c1e9cc903456a126ee5d20e1622f8ed1c1bb2e8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Boosting</topic><topic>Collaboration</topic><topic>Collaborative filtering (CF)</topic><topic>content-based filtering (CB)</topic><topic>e-commerce</topic><topic>Informatics</topic><topic>Information filtering</topic><topic>Information filters</topic><topic>justification</topic><topic>Marketing and sales</topic><topic>Navigation</topic><topic>Nearest neighbor searches</topic><topic>Recommender systems</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Symeonidis, P.</creatorcontrib><creatorcontrib>Nanopoulos, A.</creatorcontrib><creatorcontrib>Manolopoulos, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Symeonidis, P.</au><au>Nanopoulos, A.</au><au>Manolopoulos, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Providing Justifications in Recommender Systems</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle><stitle>TSMCA</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>38</volume><issue>6</issue><spage>1262</spage><epage>1272</epage><pages>1262-1272</pages><issn>1083-4427</issn><issn>2168-2216</issn><eissn>1558-2426</eissn><eissn>2168-2232</eissn><coden>ITSHFX</coden><abstract>Recommender systems are gaining widespread acceptance in e-commerce applications to confront the ldquoinformation overloadrdquo problem. Providing justification to a recommendation gives credibility to a recommender system. Some recommender systems (Amazon.com, etc.) try to explain their recommendations, in an effort to regain customer acceptance and trust. However, their explanations are not sufficient, because they are based solely on rating or navigational data, ignoring the content data. Several systems have proposed the combination of content data with rating data to provide more accurate recommendations, but they cannot provide qualitative justifications. In this paper, we propose a novel approach that attains both accurate and justifiable recommendations. We construct a feature profile for the users to reveal their favorite features. Moreover, we group users into biclusters (i.e., groups of users which exhibit highly correlated ratings on groups of items) to exploit partial matching between the preferences of the target user and each group of users. We have evaluated the quality of our justifications with an objective metric in two real data sets (Reuters and MovieLens), showing the superiority of the proposed method over existing approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMCA.2008.2003969</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4427 |
ispartof | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2008-11, Vol.38 (6), p.1262-1272 |
issn | 1083-4427 2168-2216 1558-2426 2168-2232 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSMCA_2008_2003969 |
source | IEEE Electronic Library (IEL) |
subjects | Boosting Collaboration Collaborative filtering (CF) content-based filtering (CB) e-commerce Informatics Information filtering Information filters justification Marketing and sales Navigation Nearest neighbor searches Recommender systems Robots |
title | Providing Justifications in Recommender Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Providing%20Justifications%20in%20Recommender%20Systems&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20A,%20Systems%20and%20humans&rft.au=Symeonidis,%20P.&rft.date=2008-11-01&rft.volume=38&rft.issue=6&rft.spage=1262&rft.epage=1272&rft.pages=1262-1272&rft.issn=1083-4427&rft.eissn=1558-2426&rft.coden=ITSHFX&rft_id=info:doi/10.1109/TSMCA.2008.2003969&rft_dat=%3Cproquest_RIE%3E2323138211%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862378770&rft_id=info:pmid/&rft_ieee_id=4648950&rfr_iscdi=true |