Providing Justifications in Recommender Systems

Recommender systems are gaining widespread acceptance in e-commerce applications to confront the ldquoinformation overloadrdquo problem. Providing justification to a recommendation gives credibility to a recommender system. Some recommender systems (Amazon.com, etc.) try to explain their recommendat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2008-11, Vol.38 (6), p.1262-1272
Hauptverfasser: Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1272
container_issue 6
container_start_page 1262
container_title IEEE transactions on systems, man and cybernetics. Part A, Systems and humans
container_volume 38
creator Symeonidis, P.
Nanopoulos, A.
Manolopoulos, Y.
description Recommender systems are gaining widespread acceptance in e-commerce applications to confront the ldquoinformation overloadrdquo problem. Providing justification to a recommendation gives credibility to a recommender system. Some recommender systems (Amazon.com, etc.) try to explain their recommendations, in an effort to regain customer acceptance and trust. However, their explanations are not sufficient, because they are based solely on rating or navigational data, ignoring the content data. Several systems have proposed the combination of content data with rating data to provide more accurate recommendations, but they cannot provide qualitative justifications. In this paper, we propose a novel approach that attains both accurate and justifiable recommendations. We construct a feature profile for the users to reveal their favorite features. Moreover, we group users into biclusters (i.e., groups of users which exhibit highly correlated ratings on groups of items) to exploit partial matching between the preferences of the target user and each group of users. We have evaluated the quality of our justifications with an objective metric in two real data sets (Reuters and MovieLens), showing the superiority of the proposed method over existing approaches.
doi_str_mv 10.1109/TSMCA.2008.2003969
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSMCA_2008_2003969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4648950</ieee_id><sourcerecordid>2323138211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-76ad1e76b7cbcf907a16e3e4c1e9cc903456a126ee5d20e1622f8ed1c1bb2e8f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFb_gF6C97SzH9mPYyl-UlFsPS_JZiJbTFJ3E6H_3tQUL_PO4X1m4CHkmsKMUjDzzfpluZgxAH0Y3EhzQiY0y3TKBJOnww6ap0IwdU4uYtwCUCGMmJD5W2h_fOmbz-S5j52vvMs73zYx8U3yjq6ta2xKDMl6Hzus4yU5q_KviFfHnJKP-7vN8jFdvT48LRer1DEjulTJvKSoZKFc4SoDKqcSOQpH0ThngItM5pRJxKxkgFQyVmksqaNFwVBXfEpux7u70H73GDu7bfvQDC-tlowrrRQMJTaWXGhjDFjZXfB1HvaWgj14sX9e7MGLPXoZoJsR8oj4DwgptMmA_wIcnl7V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862378770</pqid></control><display><type>article</type><title>Providing Justifications in Recommender Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Symeonidis, P. ; Nanopoulos, A. ; Manolopoulos, Y.</creator><creatorcontrib>Symeonidis, P. ; Nanopoulos, A. ; Manolopoulos, Y.</creatorcontrib><description>Recommender systems are gaining widespread acceptance in e-commerce applications to confront the ldquoinformation overloadrdquo problem. Providing justification to a recommendation gives credibility to a recommender system. Some recommender systems (Amazon.com, etc.) try to explain their recommendations, in an effort to regain customer acceptance and trust. However, their explanations are not sufficient, because they are based solely on rating or navigational data, ignoring the content data. Several systems have proposed the combination of content data with rating data to provide more accurate recommendations, but they cannot provide qualitative justifications. In this paper, we propose a novel approach that attains both accurate and justifiable recommendations. We construct a feature profile for the users to reveal their favorite features. Moreover, we group users into biclusters (i.e., groups of users which exhibit highly correlated ratings on groups of items) to exploit partial matching between the preferences of the target user and each group of users. We have evaluated the quality of our justifications with an objective metric in two real data sets (Reuters and MovieLens), showing the superiority of the proposed method over existing approaches.</description><identifier>ISSN: 1083-4427</identifier><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 1558-2426</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMCA.2008.2003969</identifier><identifier>CODEN: ITSHFX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boosting ; Collaboration ; Collaborative filtering (CF) ; content-based filtering (CB) ; e-commerce ; Informatics ; Information filtering ; Information filters ; justification ; Marketing and sales ; Navigation ; Nearest neighbor searches ; Recommender systems ; Robots</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2008-11, Vol.38 (6), p.1262-1272</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-76ad1e76b7cbcf907a16e3e4c1e9cc903456a126ee5d20e1622f8ed1c1bb2e8f3</citedby><cites>FETCH-LOGICAL-c294t-76ad1e76b7cbcf907a16e3e4c1e9cc903456a126ee5d20e1622f8ed1c1bb2e8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4648950$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4648950$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Symeonidis, P.</creatorcontrib><creatorcontrib>Nanopoulos, A.</creatorcontrib><creatorcontrib>Manolopoulos, Y.</creatorcontrib><title>Providing Justifications in Recommender Systems</title><title>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</title><addtitle>TSMCA</addtitle><description>Recommender systems are gaining widespread acceptance in e-commerce applications to confront the ldquoinformation overloadrdquo problem. Providing justification to a recommendation gives credibility to a recommender system. Some recommender systems (Amazon.com, etc.) try to explain their recommendations, in an effort to regain customer acceptance and trust. However, their explanations are not sufficient, because they are based solely on rating or navigational data, ignoring the content data. Several systems have proposed the combination of content data with rating data to provide more accurate recommendations, but they cannot provide qualitative justifications. In this paper, we propose a novel approach that attains both accurate and justifiable recommendations. We construct a feature profile for the users to reveal their favorite features. Moreover, we group users into biclusters (i.e., groups of users which exhibit highly correlated ratings on groups of items) to exploit partial matching between the preferences of the target user and each group of users. We have evaluated the quality of our justifications with an objective metric in two real data sets (Reuters and MovieLens), showing the superiority of the proposed method over existing approaches.</description><subject>Boosting</subject><subject>Collaboration</subject><subject>Collaborative filtering (CF)</subject><subject>content-based filtering (CB)</subject><subject>e-commerce</subject><subject>Informatics</subject><subject>Information filtering</subject><subject>Information filters</subject><subject>justification</subject><subject>Marketing and sales</subject><subject>Navigation</subject><subject>Nearest neighbor searches</subject><subject>Recommender systems</subject><subject>Robots</subject><issn>1083-4427</issn><issn>2168-2216</issn><issn>1558-2426</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFb_gF6C97SzH9mPYyl-UlFsPS_JZiJbTFJ3E6H_3tQUL_PO4X1m4CHkmsKMUjDzzfpluZgxAH0Y3EhzQiY0y3TKBJOnww6ap0IwdU4uYtwCUCGMmJD5W2h_fOmbz-S5j52vvMs73zYx8U3yjq6ta2xKDMl6Hzus4yU5q_KviFfHnJKP-7vN8jFdvT48LRer1DEjulTJvKSoZKFc4SoDKqcSOQpH0ThngItM5pRJxKxkgFQyVmksqaNFwVBXfEpux7u70H73GDu7bfvQDC-tlowrrRQMJTaWXGhjDFjZXfB1HvaWgj14sX9e7MGLPXoZoJsR8oj4DwgptMmA_wIcnl7V</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Symeonidis, P.</creator><creator>Nanopoulos, A.</creator><creator>Manolopoulos, Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20081101</creationdate><title>Providing Justifications in Recommender Systems</title><author>Symeonidis, P. ; Nanopoulos, A. ; Manolopoulos, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-76ad1e76b7cbcf907a16e3e4c1e9cc903456a126ee5d20e1622f8ed1c1bb2e8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Boosting</topic><topic>Collaboration</topic><topic>Collaborative filtering (CF)</topic><topic>content-based filtering (CB)</topic><topic>e-commerce</topic><topic>Informatics</topic><topic>Information filtering</topic><topic>Information filters</topic><topic>justification</topic><topic>Marketing and sales</topic><topic>Navigation</topic><topic>Nearest neighbor searches</topic><topic>Recommender systems</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Symeonidis, P.</creatorcontrib><creatorcontrib>Nanopoulos, A.</creatorcontrib><creatorcontrib>Manolopoulos, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Symeonidis, P.</au><au>Nanopoulos, A.</au><au>Manolopoulos, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Providing Justifications in Recommender Systems</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle><stitle>TSMCA</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>38</volume><issue>6</issue><spage>1262</spage><epage>1272</epage><pages>1262-1272</pages><issn>1083-4427</issn><issn>2168-2216</issn><eissn>1558-2426</eissn><eissn>2168-2232</eissn><coden>ITSHFX</coden><abstract>Recommender systems are gaining widespread acceptance in e-commerce applications to confront the ldquoinformation overloadrdquo problem. Providing justification to a recommendation gives credibility to a recommender system. Some recommender systems (Amazon.com, etc.) try to explain their recommendations, in an effort to regain customer acceptance and trust. However, their explanations are not sufficient, because they are based solely on rating or navigational data, ignoring the content data. Several systems have proposed the combination of content data with rating data to provide more accurate recommendations, but they cannot provide qualitative justifications. In this paper, we propose a novel approach that attains both accurate and justifiable recommendations. We construct a feature profile for the users to reveal their favorite features. Moreover, we group users into biclusters (i.e., groups of users which exhibit highly correlated ratings on groups of items) to exploit partial matching between the preferences of the target user and each group of users. We have evaluated the quality of our justifications with an objective metric in two real data sets (Reuters and MovieLens), showing the superiority of the proposed method over existing approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMCA.2008.2003969</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4427
ispartof IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2008-11, Vol.38 (6), p.1262-1272
issn 1083-4427
2168-2216
1558-2426
2168-2232
language eng
recordid cdi_crossref_primary_10_1109_TSMCA_2008_2003969
source IEEE Electronic Library (IEL)
subjects Boosting
Collaboration
Collaborative filtering (CF)
content-based filtering (CB)
e-commerce
Informatics
Information filtering
Information filters
justification
Marketing and sales
Navigation
Nearest neighbor searches
Recommender systems
Robots
title Providing Justifications in Recommender Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Providing%20Justifications%20in%20Recommender%20Systems&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20A,%20Systems%20and%20humans&rft.au=Symeonidis,%20P.&rft.date=2008-11-01&rft.volume=38&rft.issue=6&rft.spage=1262&rft.epage=1272&rft.pages=1262-1272&rft.issn=1083-4427&rft.eissn=1558-2426&rft.coden=ITSHFX&rft_id=info:doi/10.1109/TSMCA.2008.2003969&rft_dat=%3Cproquest_RIE%3E2323138211%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862378770&rft_id=info:pmid/&rft_ieee_id=4648950&rfr_iscdi=true