Providing Justifications in Recommender Systems

Recommender systems are gaining widespread acceptance in e-commerce applications to confront the ldquoinformation overloadrdquo problem. Providing justification to a recommendation gives credibility to a recommender system. Some recommender systems (Amazon.com, etc.) try to explain their recommendat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2008-11, Vol.38 (6), p.1262-1272
Hauptverfasser: Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recommender systems are gaining widespread acceptance in e-commerce applications to confront the ldquoinformation overloadrdquo problem. Providing justification to a recommendation gives credibility to a recommender system. Some recommender systems (Amazon.com, etc.) try to explain their recommendations, in an effort to regain customer acceptance and trust. However, their explanations are not sufficient, because they are based solely on rating or navigational data, ignoring the content data. Several systems have proposed the combination of content data with rating data to provide more accurate recommendations, but they cannot provide qualitative justifications. In this paper, we propose a novel approach that attains both accurate and justifiable recommendations. We construct a feature profile for the users to reveal their favorite features. Moreover, we group users into biclusters (i.e., groups of users which exhibit highly correlated ratings on groups of items) to exploit partial matching between the preferences of the target user and each group of users. We have evaluated the quality of our justifications with an objective metric in two real data sets (Reuters and MovieLens), showing the superiority of the proposed method over existing approaches.
ISSN:1083-4427
2168-2216
1558-2426
2168-2232
DOI:10.1109/TSMCA.2008.2003969