Hardware/Software Partitioning Using Bayesian Belief Networks
In heterogeneous system design, partitioning of the functional specifications into hardware (HW) and software (SW) components is an important procedure. Often, an HW platform is chosen, and the SW is mapped onto the existing partial solution, or the actual partitioning is performed in an ad hoc mann...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2007-09, Vol.37 (5), p.655-668 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In heterogeneous system design, partitioning of the functional specifications into hardware (HW) and software (SW) components is an important procedure. Often, an HW platform is chosen, and the SW is mapped onto the existing partial solution, or the actual partitioning is performed in an ad hoc manner. The partitioning approach presented is novel in that it uses Bayesian belief networks (BBNs) to categorize functional components into HW and SW classifications. The BBNpsilas ability to propagate evidence permits the effects of a classification decision that is made about one function to be felt throughout the entire network. In addition, because BBNs have a belief of hypotheses as their core, a quantitative measurement as to the correctness of a partitioning decision is achieved. A methodology for automatically generating the qualitative structural portion of BBN and the quantitative link matrices is given. A case study of a programmable thermostat is developed to illustrate the BBN approach. The outcomes of the partitioning process are discussed and placed in a larger design context, which is called model-based codesign. |
---|---|
ISSN: | 1083-4427 2168-2216 1558-2426 2168-2232 |
DOI: | 10.1109/TSMCA.2007.902623 |