A learning process to the identification of feature points on Chinese characters
The paper describes a novel stroke extraction approach to identify the feature points of a character, using line-filtering and learning-based techniques. The line-filtering technique based on convolution operations with a set of one-dimensional (1D) Gabor templates efficiently extracts the stroke se...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2003-05, Vol.33 (3), p.386-395 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper describes a novel stroke extraction approach to identify the feature points of a character, using line-filtering and learning-based techniques. The line-filtering technique based on convolution operations with a set of one-dimensional (1D) Gabor templates efficiently extracts the stroke segments from noisy and degraded characters. Furthermore, the relationship between endpoints of stroke segments is modeled as junction structure during a learning process. Finally, each endpoint is identified as a feature point to determine the junction structure by the learning-based technique, rather than rule-based techniques with manual rule creation. Experimental results indicate that the learning-based technique can generalize learning knowledge to identify 1200 feature points with an average identification rate of 93.58% for test set, using k-fold cross-validation testing. |
---|---|
ISSN: | 1083-4427 2168-2216 1558-2426 2168-2232 |
DOI: | 10.1109/TSMCA.2003.817054 |