A learning process to the identification of feature points on Chinese characters

The paper describes a novel stroke extraction approach to identify the feature points of a character, using line-filtering and learning-based techniques. The line-filtering technique based on convolution operations with a set of one-dimensional (1D) Gabor templates efficiently extracts the stroke se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2003-05, Vol.33 (3), p.386-395
Hauptverfasser: Su, Yih-Ming, Wang, Jhing-Fa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper describes a novel stroke extraction approach to identify the feature points of a character, using line-filtering and learning-based techniques. The line-filtering technique based on convolution operations with a set of one-dimensional (1D) Gabor templates efficiently extracts the stroke segments from noisy and degraded characters. Furthermore, the relationship between endpoints of stroke segments is modeled as junction structure during a learning process. Finally, each endpoint is identified as a feature point to determine the junction structure by the learning-based technique, rather than rule-based techniques with manual rule creation. Experimental results indicate that the learning-based technique can generalize learning knowledge to identify 1200 feature points with an average identification rate of 93.58% for test set, using k-fold cross-validation testing.
ISSN:1083-4427
2168-2216
1558-2426
2168-2232
DOI:10.1109/TSMCA.2003.817054