Flexible Machine Learning-Based Cyberattack Detection Using Spatiotemporal Patterns for Distribution Systems

This letter develops a flexible machine learning detection method for cyberattacks in distribution systems considering spatiotemporal patterns. Spatiotemporal patterns are recognized by the graph Laplacian based on system-wide measurements. A flexible Bayes classifier (BC) is used to train spatiotem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2020-03, Vol.11 (2), p.1805-1808
Hauptverfasser: Cui, Mingjian, Wang, Jianhui, Chen, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter develops a flexible machine learning detection method for cyberattacks in distribution systems considering spatiotemporal patterns. Spatiotemporal patterns are recognized by the graph Laplacian based on system-wide measurements. A flexible Bayes classifier (BC) is used to train spatiotemporal patterns which could be violated when cyberattacks occur. Cyberattacks are detected by using flexible BCs online. The effectiveness of the developed method is demonstrated through standard IEEE 13and 123-node test feeders.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2020.2965797