Coordinated Optimal Network Reconfiguration and Voltage Regulator/DER Control for Unbalanced Distribution Systems

Network reconfiguration has long been used by distribution system operators to achieve certain operation objectives such as reducing system losses or regulating bus voltages. In emerging distribution systems with a proliferation of distributed energy resources (DERs), co-optimizing network topology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2019-05, Vol.10 (3), p.2912-2922
Hauptverfasser: Liu, Yikui, Li, Jie, Wu, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Network reconfiguration has long been used by distribution system operators to achieve certain operation objectives such as reducing system losses or regulating bus voltages. In emerging distribution systems with a proliferation of distributed energy resources (DERs), co-optimizing network topology and DERs' dispatches could further enhance such operational benefits. This paper focuses on the optimal network reconfiguration problem of distribution systems via an unbalanced ac optimal power flow framework, which rigorously addresses operation characters of unbalanced network, DERs, and voltage regulators (VRs). Two VR models with continuous and discrete tap ratios are studied and compared. The proposed co-optimization problem is formulated as a mixed-integer chordal relaxation-based semidefinite programming model with binary variables indicating line-switching statuses and tap positions. Several acceleration strategies by studying the structure of distribution networks are explored for reducing the number of binary variables and enhancing the computational performance. Case studies on modified IEEE 34-bus and 392-bus systems illustrate the effectiveness of the proposed approach.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2018.2815010